Skip to content
Snippets Groups Projects
02_hll_intro.md 41.2 KiB
Newer Older
Alexander Dunkel's avatar
Alexander Dunkel committed
---
jupyter:
  jupytext:
    encoding: '# -*- coding: utf-8 -*-'
    text_representation:
      extension: .md
      format_name: markdown
      format_version: '1.3'
      jupytext_version: 1.14.5
Alexander Dunkel's avatar
Alexander Dunkel committed
  kernelspec:
    display_name: worker_env
Alexander Dunkel's avatar
Alexander Dunkel committed
    language: python
    name: worker_env
Alexander Dunkel's avatar
Alexander Dunkel committed
---

<div style="width: 100%;display: flex; align-items: top;">
    <div style="float:left;width: 80%;text-align:left;position:relative">
        <h1>Part 2: Privacy-aware data structure - Introduction to HyperLogLog</h1>
        <p><strong>Workshop: Social Media, Data Analysis, &amp; Cartograpy, WS 2023/24</strong></p>
            <p><em><a href="mailto:alexander.dunkel@tu-dresden.de">Alexander Dunkel</a>
            <br> Leibniz Institute of Ecological Urban and Regional Development, 
        Transformative Capacities & Research Data Centre & Technische Universität Dresden, 
        Institute of Cartography</em></p>
        <p><img src="https://kartographie.geo.tu-dresden.de/ad/jupyter_python_datascience/version.svg" style="float:left"></p>
    </div>
    <div style="float: right;">
    <div style="width:300px">
    <img src="https://kartographie.geo.tu-dresden.de/ad/jupyter_python_datascience/FDZ-Logo_DE_RGB-blk_bg-tra_mgn-full_h200px_web.svg" style="position:relative;width:256px;margin-top:0px;margin-right:10px;clear: both;"/>
    <img  src="https://kartographie.geo.tu-dresden.de/ad/jupyter_python_datascience/TU_Dresden_Logo_blau_HKS41.svg" style="position:relative;width:256px;margin-top:0px;margin-right:10px;clear: both;"/>
    </div>
Alexander Dunkel's avatar
Alexander Dunkel committed
    </div>
</div>


This is the second notebook in a series of four notebooks:
    
1. Introduction to **Social Media data, jupyter and python spatial visualizations**
2. Introduction to **privacy issues** with Social Media data **and possible solutions** for cartographers
3. Specific visualization techniques example: **TagMaps clustering**
4. Specific data analysis: **Topic Classification**

Open these notebooks through the file explorer on the left side.

<div class="alert alert-warning" role="alert" style="color: black;">
    <ul>
        <li>For this notebook, please make sure that <code>02_hll_env</code> is shown on the 
Alexander Dunkel's avatar
Alexander Dunkel committed
            <strong>top-right corner</strong>. If not, click & select.</li>
    </ul>
        <details style="margin-left: 1em;"><summary style="cursor: pointer;"><strong>Link the environment for this notebook, if not already done.</strong></summary>Use this command in a notebook cell:
<pre><code>
!/projects/p_lv_mobicart_2324/hll_env/bin/python \
    -m ipykernel install \
    --user \
    --name hll_env \
    --display-name="02_hll_env"
Alexander Dunkel's avatar
Alexander Dunkel committed
61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000
<div class="alert alert-info" role="alert" style="color: black;">
    <details><summary><strong>Steep learning curve ahead</strong></summary>
        <div style="width:500px">
           <ul>
               <li>Some of the code used in this notebook is more advanced, compared to the first notebook</li>
               <li>We do not expect that you read / understand every step fully</li>
               <li>Rather, we think it is critical to introduce a real-world analytics workflow, 
                   covering current challenges and opportunities in cartographic data science
               </li>
            </ul>
        </div>
    </details>
</div>

<!-- #region -->
## Introduction: Privacy & Social Media
<br>
<div style="width:500px">
<strong>HLL in summary</strong>
<ul>
    <li>HyperLogLog is used for estimation of the number of distinct items in a <code>set</code> (this is called cardinality estimation)</li>
    <li>By providing only aproximate counts (with 3 to 5% inaccuracy), the overall data footprint and computing costs can be reduced significantly, providing benefits for both privacy and performance</li>
    <li>A set with 1 Billion elements takes up only 1.5 kilobytes of memory</li>
    <li>HyperLogLog Sets offer similar functionality as regular sets, such as:</li>
        <ul>
        <li>lossless union</li>
        <li>intersection</li>
        <li>exclusion</li>
        </ul>
</ul>
</div>
<details><summary><strong>Background about HLL Research</strong></summary>
<div style="width:500px">
In recent years, user privacy has become an increasingly important consideration. Particularly when working
with VGI and Social Media data, analysts need to compromise between flexibility of analyses and increasing
vulnerability of collected (raw) data.
<br><br>
There exist many possible solutions to this problem. One approach is <strong>data minimization</strong>. 
    In a paper, we have specifically looked at options
    to prevent collection of original data <i>at all</i>, in the context of spatial data, using a data abstraction 
    format called <a href="https://en.wikipedia.org/wiki/HyperLogLog">HyperLogLog</a>.
</div>

> **Dunkel, A., Löchner, M., & Burghardt, D. (2020).**  
  _Privacy-aware visualization of volunteered geographic information (VGI) to analyze spatial activity:  
  A benchmark implementation._ ISPRS International Journal of Geo-Information. [DOI][DOI-paper] / [PDF][PDF-paper]

<div style="width:500px">
    Beyond privacy, HyperLogLog (HLL) is a modern and fast algorithm with many advantages, which is why it is used by (e.g.) <a href="https://research.google/pubs/pub40671/">Google</a>, <a href="https://engineering.fb.com/2018/12/13/data-infrastructure/hyperloglog/">Facebook</a> and <a href="https://de.slideshare.net/b0ris_1/audience-counting-at-scale">Apple</a> to make sense of increasing data collections.
<br><br>
</div>



[DOI-paper]: https://doi.org/10.3390/ijgi9100607
[PDF-paper]: https://www.mdpi.com/2220-9964/9/10/607/pdf
<!-- #endregion -->

## Basics


<details><summary><strong>Python-hll</strong></summary>
<div style="width:500px">
<ul>
    <li>Many different HLL implementations exist </li>
    <li>There is a <a href="https://github.com/AdRoll/python-hll">python library</a> available </li>
    <li>The library is quite slow in comparison to the <a href="https://github.com/citusdata/postgresql-hll">Postgres HLL implementation</a> </li>
    <li>we're using python-hll for demonstration purposes herein </li>
    <li>the website <a href="https://lbsn.vgiscience.org/">lbsn.vgiscience.org</a> contains more examples that show how to use Postgres for HLL calculation in python. </li>
</ul>
</div>
    </details>


### Introduction to HLL sets


<details><summary><strong>HyperLogLog Details</strong></summary>
        <div style="width:500px">
            <ul>
                <li>A HyperLogLog (HLL) Set is used for counting distinct elements in the set.</li>
                <li>For HLL to work, it is necessary to first <a href="https://en.wikipedia.org/wiki/Hash_function">hash</a> items</li>
                <li>here, we are using <a href="https://en.wikipedia.org/wiki/MurmurHash">MurmurHash3</a></li>
                <li>the hash function guarantees a predictably distribution of characters in the string,</li>
                <li>which is required for the probabilistic estimation of count of items</li>
            </ul>
        </div>
    </details>


Lets first see the regular approach of creating a set in python  
and counting the unique items in the set:


**Regular set approach in python**  

```python
user1 = 'foo'
user2 = 'bar'
# note the duplicate entries for user2
users = {user1, user2, user2, user2}
usercount = len(users)
print(usercount)
```

**HLL approach**

```python
from python_hll.hll import HLL
import mmh3

user1_hash = mmh3.hash(user1)
user2_hash = mmh3.hash(user2)

hll = HLL(11, 5) # log2m=11, regwidth=5

hll.add_raw(user1_hash)
hll.add_raw(user2_hash)
hll.add_raw(user2_hash)
hll.add_raw(user2_hash)

usercount = hll.cardinality()

print(usercount)
```

<details><summary><strong>log2m=11, regwidth=5 ?</strong></summary>
    These values define some of the characteristics of the HLL set, which affect
    (e.g.) how accurate the HLL set will be. A default register width of 5 (regwidth = 5),
    with a log2m of 11 allows adding a maximum number of
    
\begin{align}1.6x10^{12}= 1600000000000\end{align}
    
items to a single set (with a margin of cardinality error of ±2.30%)
</details>



<!-- #region -->
HLL has two [modes of operations](https://github.com/citusdata/postgresql-hll/blob/master/REFERENCE.md#metadata-functions) that increase accuracy for small sets
- Explicit
- and Sparse

<div class="alert alert-info" role="alert" style="color: black;">
    <details><summary><strong>Turn off explicit mode</strong></summary>
        <br>
        <div style="width:500px">
<p>Because Explicit mode stores Hashes fully,  
it cannot provide any benefits for privacy,  
    which is why it should be disabled.</p>
        </div>
    </details>
</div>



Repeat the process above with explicit mode turned off:
<!-- #endregion -->

```python
hll = HLL(11, 5, 0, 1) # log2m=11, regwidth=5, explicit=off, sparse=auto)
hll.add_raw(user1_hash)
hll.add_raw(user2_hash)
hll.add_raw(user2_hash)
hll.add_raw(user2_hash)

usercount = hll.cardinality()
print(usercount)
```

**Union of two sets**


At any point, we can update a hll set with new items  
(which is why HLL works well in streaming contexts):

```python
user3 = 'baz'
user3_hash = mmh3.hash(user3)
hll.add_raw(user3_hash)
usercount = hll.cardinality()
print(usercount)
```

.. but separate HLL sets may be created independently,  
to be only merged finally for cardinality estimation:

```python
hll_params = (11, 5, 0, 1)

hll1 = HLL(*hll_params)
hll2 = HLL(*hll_params)
hll3 = HLL(*hll_params)

hll1.add_raw(mmh3.hash('foo'))
hll2.add_raw(mmh3.hash('bar'))
hll3.add_raw(mmh3.hash('baz'))

hll1.union(hll2) # modifies hll1 to contain the union
hll1.union(hll3)

usercount = hll1.cardinality()
print(usercount)
```

<div class="alert alert-info" role="alert" style="color: black;">
    <details><summary><strong>Parallelized computation</strong></summary>
        <br>
        <div style="width:500px">
            <ul>
            <li>The lossless union of HLL sets allows parallelized computation</li> 
            <li>The inability to parallelize computation is one of the main limitations of regular sets, and it is typically referred to with
            the <a href="https://en.wikipedia.org/wiki/Count-distinct_problem">Count-Distinct Problem</a></li>
            </ul>
        </div>
    </details>
</div>


## Counting Examples: 2-Components


<div style="width:500px">
What is counted entirely depends on the application context.

Typically, this will result in a <strong>2-component setup</strong> with
<ul>
    <li>the <strong>first component</strong> as a reference <i>for the count context, e.g.:</i></li>
    <ul><li>coordinates, areas etc. (lat, lng)</li>
        <li>terms</li>
        <li>dates or times</li>
        <li>groups/origins (e.g. different social networks)</li>
    </ul>
    <li>the <strong>second component</strong> as the HLL set, for counting different metrics, e.g.</li>
    <ul><li>Post Count (PC)</li>
        <li>User Count (UC)</li>
        <li>User Days (PUC)</li>
    </ul>
    </ul>
</div>


<div class="alert alert-info" role="alert" style="color: black;">
    <details><summary><strong>Further information</strong></summary>
        <br>
        <div style="width:500px"><ul>
<li>The above 'convention' for privacy-aware visual analytics has been published in <a href="https://www.mdpi.com/2220-9964/9/10/607">the paper referenced at the beginning of the notebook</a></li>
<li>for demonstration purposes, different examples of this 2-component structure are implemented <a href="https://gitlab.vgiscience.de/lbsn/structure/hlldb/-/blob/master/structure/98-create-tables.sql">in a Postgres database</a></li>
<li>more complex examples, such as composite metrics, allow for a large variety of visualizations</li>
            <li> Adapting existing visualization techniques to the privacy-aware structure requires effort, <i>most</i> but not all techniques are compatible
            </ul>
</div>
    </details>
</div>            


## YFCC100M Example: Monitoring of Worldwide User Days

<!-- #region -->
A **User Day** refers to a common metric used in visual analytics.

Each user is counted once per day.

This is commonly done by concatentation of a unique user identifier 
and the unique day of activity, e.g.:
```python
userdays_set = set()
userday_sample = "96117893@N05" + "2012-04-14"
userdays_set.add(userday_sample)
print(len(userdays_set))
> 1
```
<!-- #endregion -->

We have create an example processing pipeline for counting user days world wide, using the [Flickr YFCC100M dataset](http://projects.dfki.uni-kl.de/yfcc100m/),
which contains about 50 Million georeferenced photos uploaded by Flickr users with a Creative Commons License.

The full processing pipeline can be viewed in [a separate collection of notebooks](https://gitlab.vgiscience.de/ad/yfcc_gridagg).

In the following, we will use the HLL data to replicate these visuals.

We'll use python methods stored and loaded from modules.


### Data collection granularity

There's a difference between collecting and visualizing data.

During data collection, information can be stored with a higher  
information granularity, to allow _some_ flexibility for  
tuning visualizations.

In the YFCC100M Example, we "collect" data at a GeoHash granularity of 5  
(about 3 km "snapping distance" for coordinates).

During data visualization, these coordinates and HLL sets are aggregated  
further to a worldwide grid of 100x100 km bins.

Have a look at the data structure at data collection time.

```python
from pathlib import Path

OUTPUT = Path.cwd() / "out"
OUTPUT.mkdir(exist_ok=True)
TMP = Path.cwd() / "tmp"
TMP.mkdir(exist_ok=True)
```

```python
%load_ext autoreload
%autoreload 2
```

```python
import sys

module_path = str(Path.cwd().parents[0] / "py")
if module_path not in sys.path:
    sys.path.append(module_path)
from modules import tools
```

Load the full benchmark dataset.

```python
filename = "yfcc_latlng.csv"
yfcc_input_csv_path = TMP / filename
if not yfcc_input_csv_path.exists():
    sample_url = tools.get_sample_url()
    yfcc_csv_url = f'{sample_url}/download?path=%2F&files={filename}'
    tools.get_stream_file(url=yfcc_csv_url, path=yfcc_input_csv_path)
```

Load csv data to pandas dataframe.

```python
%%time
import pandas as pd
dtypes = {'latitude': float, 'longitude': float}
df = pd.read_csv(
    yfcc_input_csv_path, dtype=dtypes, encoding='utf-8')
print(len(df))
```

The dataset contains a total number of 451,949 distinct coordinates,  
at a GeoHash precision of 5 (~2500 Meters snapping distance.)

```python
df.head()
```

**Calculate a single HLL cardinality (first row):**

```python
sample_hll_set = df.loc[0, "date_hll"]
```

```python
from python_hll.util import NumberUtil
hex_string = sample_hll_set[2:]
print(sample_hll_set[2:])
hll = HLL.from_bytes(NumberUtil.from_hex(hex_string, 0, len(hex_string)))
```

```python
hll.cardinality()
```

The two components of the structure are highlighted below.

```python
tools.display_header_stats(
    df.head(),
    base_cols=["latitude", "longitude"],
    metric_cols=["date_hll"])
```

<p>The color refers to the two components:</p>
<div style="text-align:center;width:100%;">
<div style="background:#8FBC8F;width:220px;display:inline-block;vertical-align: top;*display:inline;padding:5px;">
    <b>1</b> - The (spatial) <i>context</i> for HLL sets (called the 'base' in <a href="https://lbsn.vgiscience.org/concept-structure/">lbsn structure</a>)
</div>
<div style="background:#FFF8DC;width:220px;display:inline-block;vertical-align: top;*display:inline;padding:5px;">
    <b>2</b> - The HLL set (called the 'overlay')
</div>
</div>


<div class="alert alert-info" role="alert" style="color: black;">
    <details><summary><strong>Compare RAW data</strong></summary>
        <div style="width:500px"><ul>
        <li>Unlike RAW data, the user-id and the distinct dates are stored in the HLL sets above (date_hll)</li>
            <li>When using RAW data, storing the user-id and date, to count userdays, would also mean<br>
            that each user can be tracked across different locations and times</li>
            <li>HLL allows to prevent such misuse of data.</li>
            </ul>
</div>
    </details>
</div>     


### Data visualization granularity

- there're many ways to visualize data
- typically, visualizations will present  
  information at a information granularity  
  that is suited for the specific application  
  context
- To aggregate information from HLL data,  
  individual HLL sets need to be merged  
  (a union operation)
- For the YFCC100M Example, the process  
  to union HLL sets is shown [here](https://ad.vgiscience.org/yfcc_gridagg/03_yfcc_gridagg_hll.html)
- We're going to load and visualize this  
  aggregate data below

```python
from modules import yfcc
```

```python
filename = "yfcc_all_est_benchmark.csv"
yfcc_benchmark_csv_path = TMP / filename
if not yfcc_benchmark_csv_path.exists():
    yfcc_csv_url = f'{sample_url}/download?path=%2F&files={filename}'
    tools.get_stream_file(
        url=yfcc_csv_url, path=yfcc_benchmark_csv_path)
```

```python
grid = yfcc.grid_agg_fromcsv(
    yfcc_benchmark_csv_path,
    columns=["xbin", "ybin", "userdays_hll"])
```

```python
grid[grid["userdays_hll"].notna()].head()
```

```python
tools.display_header_stats(
    grid[grid["userdays_hll"].notna()].head(),
    base_cols=["geometry"],
    metric_cols=["userdays_hll"])
```

<div class="alert alert-info" role="alert" style="color: black;">
    <details><summary><strong>Description of columns</strong></summary>
        <div style="width:500px"><ul>
        <li><strong>geometry</strong>: A WKT-Polygon for the area (100x100km bin)</li>  
        <li><strong>userdays_hll</strong>: The HLL set, containing all userdays measured for the respective area</li> 
        <li><strong>xbin/ybin</strong>: The DataFrame (multi-) index, each 100x100km bin has a unique x and y number.</li>
            </ul>
</div>
    </details>
</div>     


**Calculate the cardinality for all bins and store in extra column:**

```python
def hll_from_byte(hll_set: str):
    """Return HLL set from binary representation"""
    hex_string = hll_set[2:]
    return HLL.from_bytes(
        NumberUtil.from_hex(
            hex_string, 0, len(hex_string)))
```

```python
def cardinality_from_hll(hll_set, total, ix=[0]):
    """Turn binary hll into HLL set and return cardinality"""
    ix[0] += 1
    loaded = ix[0]
    hll = hll_from_byte(hll_set)
    if (loaded % 100 == 0) or (total == loaded):
        tools.stream_progress_basic(
            total, loaded)
    return hll.cardinality() - 1
```

<div class="alert alert-info" role="alert" style="color: black;">
    <details><summary><strong>Progress reporting in Jupyter</strong></summary>
        <div style="width:500px">
        <ul>
            <li><code>tools.stream_progress_basic()</code>: For long running processes, progress should be reported.</li>  
            <li>Have a look at the function above, defined in <code>/py/modules/tools.py</code></li> 
            <li><code>ix=[0]</code>? Defines a muteable kwarg, which gets allocated once, for the function, and is then used it to keep track of the progress</li>
            <li><code>loaded % 100 == 0</code>? The % is the modulo operator, which is used to limit update ferquency to every 100th step (where the modulo evaluates to 0)</li>
        </ul>
</div>
    </details>
</div>     


Calculate cardinality for all bins.

<div class="alert alert-info" role="alert" style="color: black;">
This process will take some time (about 3-5 Minutes),  
due to using the slow(er) python-hll implementation.
</div>

```python
%%time
grid_cached = Path(TMP / "grid.pkl")
if grid_cached.exists():
    grid = pd.read_pickle(grid_cached)
else:
    mask = grid["userdays_hll"].notna()
    grid["userdays_est"] = 0
    total = len(grid[mask].index)
    grid.loc[mask, 'userdays_est'] = grid[mask].apply(
            lambda x: cardinality_from_hll(
               x["userdays_hll"], total),
            axis=1)
```

<div class="alert alert-info" role="alert" style="color: black;"><details><summary><strong>RuntimeWarning?</strong> </summary>
    <div style="width:500px"><ul>
        <li><a href="https://github.com/AdRoll/python-hll">python-hll library</a> is in a very early stage of development</li>  
        <li>it is not fully compatible with the <a href="https://github.com/citusdata/postgresql-hll">citus hll implementation</a> in postgres</li> 
        <li>The shown <a href="https://tech.nextroll.com/blog/dev/2019/10/01/hll-in-python.html">RuntimeWarning (Overflow)</a> is one of the issues that need to be resolved in the future</li>
        <li>If you run this notebook locally, it is recommended to use <a href="https://gitlab.vgiscience.de/lbsn/databases/pg-hll-empty">pg-hll-empty</a> for
        any hll calculations, as is shown (e.g.) in the original <a href="https://gitlab.vgiscience.de/ad/yfcc_gridagg">YFCC100M notebooks</a>.</li>
        </ul>
</div>
</details>
</div>


<div class="alert alert-info" role="alert" style="color: black;"><details><summary><code>grid[mask].apply()</code>?</summary>
    <div style="width:500px"><ul>
        <li>This is another example of boolean masking with pandas</li>
        <li><code>grid["userdays_hll"].notna()</code> creates a list (a <code>pd.Series</code>) of True/False values</li>
        <li><code>grid.loc[mask, 'userdays_est']</code> uses the index of the mask, to select indexes, and the column 'userdays_est', to assign values</li>
        </ul>
    </div>
</details></div>


From now on, disable warnings:

```python
import warnings 
warnings.filterwarnings('ignore')
```

Write a `pickle` of the dataframe, to cache for repeated use:

```python
if not grid_cached.exists():
    grid.to_pickle(grid_cached)
```

**Have a look at the cardinality below.**

```python
grid[grid["userdays_hll"].notna()].head()
```

#### Visualize the grid, using prepared methods


Temporary fix to prevent proj-path warning:

```python
import sys, os
os.environ["PROJ_LIB"] = str(Path(sys.executable).parents[1] / 'share' / 'proj')
```

Activate the bokeh holoviews extension.

```python
from modules import grid as yfcc_grid
import holoviews as hv
hv.notebook_extension('bokeh')
```

.. visualize the grid, **as an interactive map**, shown in the notebook:

```python
gv_layers = yfcc_grid.plot_interactive(
    grid, title=f'YFCC User Days (estimated) per 100 km grid',
    metric="userdays_est")
```

```python
gv_layers
```

.. or, **store as an external HTML file**, to be viewed separately (note the `output=OUTPUT` that enabled HTML export):

```python
yfcc_grid.plot_interactive(
    grid, title=f'YFCC User Days (estimated) per 100 km grid', metric="userdays_est",
    store_html="yfcc_userdays_est", output=OUTPUT)
```

<div class="alert alert-warning" role="alert" style="color: black;">
    <details><summary><strong>Open HTML</strong></summary>
    <ul>
        <li>go to notebooks/out</li>
        <li>.. and open yfcc_userdays_est.html with <br><strong>Right-Click > Open In New Browser-Tab</strong></li>
    </ul>
    </details>
</div>


## Working with HLL data: Intersection Example

HLL is not pure statistic data.

There is _some_ flexibility to explore HLL sets further,  
by using the **union** and **intersection** functionality.

We're going to explore this functionality below.

The task is to union all HLL sets for userdays for:
- Germany
- France
- UK

.. and finally visualizing total **user counts** for these countries  
and the subset of users that have visited two or all of these
countries.


<div class="alert alert-info" role="alert" style="color: black;">
    <details><summary><strong>Python GIS Operations</strong></summary>
        <div style="width:500px"><ul>
        <li>The code below is not any more complex than working with RAW data</li>  
        <li>We'll learn how to use some common GIS operations in python below</li> 
            </ul>
</div>
    </details>
</div>     


<div class="alert alert-info" role="alert" style="color: black;">
    <details><summary><strong>Why user counts, and not user days?</strong></summary>
        <div style="width:500px"><ul>
            <li>Userdays (eg. in the form of <code>user-id||date</code>) are not suited to study visitation intersection between countries.</li>  
        <li>In other words, it is unlikely that one user has visited more than one country on a single day.</li> 
        <li>No or little intersection would be found by using user days.</li>
        <li>Using hashed user ids (converted to HLL) instead allows to count the users having visited two or more countries</li>
            </ul>
</div>
    </details>
</div>   


Load user hll sets:

```python
grid = yfcc.grid_agg_fromcsv(
    TMP / "yfcc_all_est_benchmark.csv",
    columns=["xbin", "ybin", "usercount_hll"])
```

Preview:

```python
grid[grid["usercount_hll"].notna()].head()
```

### Union hll sets for Countries UK, DE and FR


#### Selection of grid cells based on country geometry


Load country geometry:

```python
import geopandas as gp
world = gp.read_file(
    gp.datasets.get_path('naturalearth_lowres'),
    crs=yfcc.CRS_WGS)
world = world.to_crs(
    yfcc.CRS_PROJ)
```

<div class="alert alert-info" role="alert" style="color: black;"><details><summary><strong><code>gp.datasets.get_path()</code>?</strong></summary>
<ul>
    <li>Some data is provided by Geopandas</li>
    <li>One of these datasets is the <a href="https://www.naturalearthdata.com/downloads/">natural earth lowres countries</a> shapefile</li>
    <li>.. but you can load any Shapefile or GIS data here.</li>
</ul>
</details></div>


Select geometry for DE, FR and UK

```python
de = world[world['name'] == "Germany"]
uk = world[world['name'] == "United Kingdom"]
fr = world[world['name'] == "France"]
```

<div class="alert alert-warning" role="alert" style="color: black;">
    <details><summary><strong>Select different countries</strong></summary>
    <ul>
        <li>Optionally: Modify the list of countries to adapt visualizations below.</li>
    </ul>
    </details>
</div>


Drop French territory of French Guiana:

```python
fr = fr.explode().iloc[1:].dissolve(by='name')
fr.plot()
```

**Preview selection.** 

Note that the territory of France includes Corsica,  
which is acceptable for the example use case.

```python
import matplotlib.pyplot as plt
fig, (ax1, ax2, ax3) = plt.subplots(1, 3)
fig.suptitle(
    'Areas to test for common visitors in the hll benchmark dataset')
for ax in (ax1, ax2, ax3):
    ax.set_axis_off()
ax1.title.set_text('DE')
ax2.title.set_text('UK')
ax3.title.set_text('FR')
de.plot(ax=ax1)
uk.plot(ax=ax2)
fr.plot(ax=ax3)
```

#### Intersection with grid


Since grid size is 100 km, 
direct intersection will yield some error rate (in this case, called _[MAUP](https://en.wikipedia.org/wiki/Modifiable_areal_unit_problem)_).  
Use centroid of grid cells to select bins based on country geometry.  

Get centroids as Geoseries and turn into GeoDataFrame:

```python
centroid_grid = grid.centroid.reset_index()
centroid_grid.set_index(["xbin", "ybin"], inplace=True)
```

```python
grid.centroid
```

Define function to intersection, using geopandas [sjoin (spatial join)](https://geopandas.org/reference/geopandas.sjoin.html)

```python
from geopandas.tools import sjoin
def intersect_grid_centroids(
    grid: gp.GeoDataFrame, 
    intersect_gdf: gp.GeoDataFrame):
    """Return grid centroids from grid that 
    intersect with intersect_gdf
    """
    centroid_grid = gp.GeoDataFrame(
        grid.centroid)
    centroid_grid.rename(
        columns={0:'geometry'},
        inplace=True)
    centroid_grid.set_geometry(
        'geometry', crs=grid.crs, 
        inplace=True)
    grid_intersect = sjoin(
        centroid_grid, intersect_gdf, 
        how='right')
    grid_intersect.set_index(
        ["index_left0", "index_left1"],
        inplace=True)
    grid_intersect.index.names = ['xbin','ybin']
    return grid.loc[grid_intersect.index]
```

Run intersection for countries:

```python
grid_de = intersect_grid_centroids(
    grid=grid, intersect_gdf=de)
grid_de.plot(edgecolor='white')
```

```python
grid_fr = intersect_grid_centroids(
    grid=grid, intersect_gdf=fr)
grid_fr.plot(edgecolor='white')
```

```python
grid_uk = intersect_grid_centroids(
    grid=grid, intersect_gdf=uk)
grid_uk.plot(edgecolor='white')
```

#### Plot preview of selected grid cells (bins)


Define colors:

```python
color_de = "#fc4f30"
color_fr = "#008fd5"
color_uk = "#6d904f"
```

Define map boundary:

```python
bbox_europe = (
    -9.580078, 41.571384,
    16.611328, 59.714117)
minx, miny = yfcc.PROJ_TRANSFORMER.transform(
    bbox_europe[0], bbox_europe[1])
maxx, maxy = yfcc.PROJ_TRANSFORMER.transform(
    bbox_europe[2], bbox_europe[3])
buf = 100000
```

```python
from typing import List, Optional
def plot_map(
    grid: gp.GeoDataFrame, sel_grids: List[gp.GeoDataFrame],
    sel_colors: List[str],
    title: Optional[str] = None, save_fig: Optional[str] = None,
    ax = None, output: Optional[Path] = OUTPUT):
    """Plot GeoDataFrame with matplotlib backend, optionaly export as png"""
    if not ax:
        fig, ax = plt.subplots(1, 1, figsize=(5, 6))
    ax.set_xlim(minx-buf, maxx+buf)
    ax.set_ylim(miny-buf, maxy+buf)
    if title:
        ax.set_title(title, fontsize=12)
    for ix, sel_grid in enumerate(sel_grids):
        sel_grid.plot(
            ax=ax,
            color=sel_colors[ix],
            edgecolor='white',
            alpha=0.9)
    grid.boundary.plot(
        ax=ax,
        edgecolor='black', 
        linewidth=0.1,
        alpha=0.9)
    # combine with world geometry
    world.plot(
        ax=ax, color='none', edgecolor='black', linewidth=0.3)
    # turn axis off
    ax.set_axis_off()
    if not save_fig:
        return
    fig.savefig(output / save_fig, dpi=300, format='PNG',
               bbox_inches='tight', pad_inches=1)
```

```python
sel_grids=[grid_de, grid_uk, grid_fr]
sel_colors=[color_de, color_uk, color_fr]
plot_map(
    grid=grid, sel_grids=sel_grids, 
    sel_colors=sel_colors,
    title='Grid selection for DE, FR and UK',
    save_fig='grid_selection_countries.png')
```

### Union of hll sets

```python
def union_hll(hll: HLL, hll2):
    """Union of two HLL sets. The first HLL set will be modified in-place."""
    hll.union(hll2)
    
def union_all_hll(
    hll_series: pd.Series, cardinality: bool = True) -> pd.Series:
    """HLL Union and (optional) cardinality estimation from series of hll sets

        Args:
        hll_series: Indexed series (bins) of hll sets. 
        cardinality: If True, returns cardinality (counts). Otherwise,
            the unioned hll set will be returned.
    """
    
    hll_set = None
    for hll_set_str in hll_series.values.tolist():
        if hll_set is None:
            # set first hll set
            hll_set = hll_from_byte(hll_set_str)
            continue
        hll_set2 = hll_from_byte(hll_set_str)
        union_hll(hll_set, hll_set2)
    return hll_set.cardinality()
```

Calculate distinct users per country:

```python
grid_sel = {
    "de": grid_de,
    "uk": grid_uk,
    "fr": grid_fr
}
distinct_users_total = {}
for country, grid_sel in grid_sel.items():
    # drop bins with no values
    cardinality_total = union_all_hll(
        grid_sel["usercount_hll"].dropna())
    distinct_users_total[country] = cardinality_total
    print(
        f"{distinct_users_total[country]} distinct users "
        f"who shared YFCC100M photos in {country.upper()}")
```

### Calculate intersection (common visitors)

<!-- #region -->
According to the [Union-intersection-principle](https://en.wikipedia.org/wiki/Inclusion%E2%80%93exclusion_principle):

$|A \cup B| = |A| + |B| - |A \cap B|$

which can also be written as:

$|A \cap B| = |A| + |B| - |A \cup B|$

Therefore, unions can be used to calculate intersection. Calculate $|DE \cup FR|$, $|DE \cup UK|$ and $|UK \cup FR|$, i.e.:
```python
IntersectionCount = 
hll_cardinality(grid_de)::int +
hll_cardinality(grid_fr)::int - 
hll_cardinality(hll_union(grid_de, grid_fr)
```
<!-- #endregion -->

**First, prepare combination for different sets.**