---
jupyter:
  jupytext:
    encoding: '# -*- coding: utf-8 -*-'
    text_representation:
      extension: .md
      format_name: markdown
      format_version: '1.3'
      jupytext_version: 1.14.5
  kernelspec:
    display_name: worker_env
    language: python
    name: worker_env
---

<div style="width: 100%;display: flex; align-items: top;">
    <div style="float:left;width: 80%;text-align:left;position:relative">
        <h1>Part 2: Privacy-aware data structure - Introduction to HyperLogLog</h1>
        <p><strong>Workshop: Social Media, Data Analysis, &amp; Cartograpy, WS 2023/24</strong></p>
            <p><em><a href="mailto:alexander.dunkel@tu-dresden.de">Alexander Dunkel</a>
            <br> Leibniz Institute of Ecological Urban and Regional Development, 
        Transformative Capacities & Research Data Centre & Technische Universität Dresden, 
        Institute of Cartography</em></p>
        <p><img src="https://kartographie.geo.tu-dresden.de/ad/jupyter_python_datascience/version.svg" style="float:left"></p>
    </div>
    <div style="float: right;">
    <div style="width:300px">
    <img src="https://kartographie.geo.tu-dresden.de/ad/jupyter_python_datascience/FDZ-Logo_DE_RGB-blk_bg-tra_mgn-full_h200px_web.svg" style="position:relative;width:256px;margin-top:0px;margin-right:10px;clear: both;"/>
    <img  src="https://kartographie.geo.tu-dresden.de/ad/jupyter_python_datascience/TU_Dresden_Logo_blau_HKS41.svg" style="position:relative;width:256px;margin-top:0px;margin-right:10px;clear: both;"/>
    </div>
    </div>
</div>


This is the second notebook in a series of four notebooks:
    
1. Introduction to **Social Media data, jupyter and python spatial visualizations**
2. Introduction to **privacy issues** with Social Media data **and possible solutions** for cartographers
3. Specific visualization techniques example: **TagMaps clustering**
4. Specific data analysis: **Topic Classification**

Open these notebooks through the file explorer on the left side.

<div class="alert alert-warning" role="alert" style="color: black;">
    <ul>
        <li>For this notebook, please make sure that <code>02_hll_env</code> is shown on the 
            <strong>top-right corner</strong>. If not, click & select.</li>
    </ul>
        <details style="margin-left: 1em;"><summary style="cursor: pointer;"><strong>Link the environment for this notebook, if not already done.</strong></summary>Use this command in a notebook cell:
<pre><code>
!/projects/p_lv_mobicart_2324/hll_env/bin/python \
    -m ipykernel install \
    --user \
    --name hll_env \
    --display-name="02_hll_env"
</code></pre>
</details>
</div>


<div class="alert alert-info" role="alert" style="color: black;">
    <details><summary><strong>Steep learning curve ahead</strong></summary>
        <div style="width:500px">
           <ul>
               <li>Some of the code used in this notebook is more advanced, compared to the first notebook</li>
               <li>We do not expect that you read / understand every step fully</li>
               <li>Rather, we think it is critical to introduce a real-world analytics workflow, 
                   covering current challenges and opportunities in cartographic data science
               </li>
            </ul>
        </div>
    </details>
</div>

<!-- #region -->
## Introduction: Privacy & Social Media
<br>
<div style="width:500px">
<strong>HLL in summary</strong>
<ul>
    <li>HyperLogLog is used for estimation of the number of distinct items in a <code>set</code> (this is called cardinality estimation)</li>
    <li>By providing only aproximate counts (with 3 to 5% inaccuracy), the overall data footprint and computing costs can be reduced significantly, providing benefits for both privacy and performance</li>
    <li>A set with 1 Billion elements takes up only 1.5 kilobytes of memory</li>
    <li>HyperLogLog Sets offer similar functionality as regular sets, such as:</li>
        <ul>
        <li>lossless union</li>
        <li>intersection</li>
        <li>exclusion</li>
        </ul>
</ul>
</div>
<details><summary><strong>Background about HLL Research</strong></summary>
<div style="width:500px">
In recent years, user privacy has become an increasingly important consideration. Particularly when working
with VGI and Social Media data, analysts need to compromise between flexibility of analyses and increasing
vulnerability of collected (raw) data.
<br><br>
There exist many possible solutions to this problem. One approach is <strong>data minimization</strong>. 
    In a paper, we have specifically looked at options
    to prevent collection of original data <i>at all</i>, in the context of spatial data, using a data abstraction 
    format called <a href="https://en.wikipedia.org/wiki/HyperLogLog">HyperLogLog</a>.
</div>

> **Dunkel, A., Löchner, M., & Burghardt, D. (2020).**  
  _Privacy-aware visualization of volunteered geographic information (VGI) to analyze spatial activity:  
  A benchmark implementation._ ISPRS International Journal of Geo-Information. [DOI][DOI-paper] / [PDF][PDF-paper]

<div style="width:500px">
    Beyond privacy, HyperLogLog (HLL) is a modern and fast algorithm with many advantages, which is why it is used by (e.g.) <a href="https://research.google/pubs/pub40671/">Google</a>, <a href="https://engineering.fb.com/2018/12/13/data-infrastructure/hyperloglog/">Facebook</a> and <a href="https://de.slideshare.net/b0ris_1/audience-counting-at-scale">Apple</a> to make sense of increasing data collections.
<br><br>
</div>



[DOI-paper]: https://doi.org/10.3390/ijgi9100607
[PDF-paper]: https://www.mdpi.com/2220-9964/9/10/607/pdf
<!-- #endregion -->

## Basics


<details><summary><strong>Python-hll</strong></summary>
<div style="width:500px">
<ul>
    <li>Many different HLL implementations exist </li>
    <li>There is a <a href="https://github.com/AdRoll/python-hll">python library</a> available </li>
    <li>The library is quite slow in comparison to the <a href="https://github.com/citusdata/postgresql-hll">Postgres HLL implementation</a> </li>
    <li>we're using python-hll for demonstration purposes herein </li>
    <li>the website <a href="https://lbsn.vgiscience.org/">lbsn.vgiscience.org</a> contains more examples that show how to use Postgres for HLL calculation in python. </li>
</ul>
</div>
    </details>


### Introduction to HLL sets


<details><summary><strong>HyperLogLog Details</strong></summary>
        <div style="width:500px">
            <ul>
                <li>A HyperLogLog (HLL) Set is used for counting distinct elements in the set.</li>
                <li>For HLL to work, it is necessary to first <a href="https://en.wikipedia.org/wiki/Hash_function">hash</a> items</li>
                <li>here, we are using <a href="https://en.wikipedia.org/wiki/MurmurHash">MurmurHash3</a></li>
                <li>the hash function guarantees a predictably distribution of characters in the string,</li>
                <li>which is required for the probabilistic estimation of count of items</li>
            </ul>
        </div>
    </details>


Lets first see the regular approach of creating a set in python  
and counting the unique items in the set:


**Regular set approach in python**  

```python
user1 = 'foo'
user2 = 'bar'
# note the duplicate entries for user2
users = {user1, user2, user2, user2}
usercount = len(users)
print(usercount)
```

**HLL approach**

```python
from python_hll.hll import HLL
import mmh3

user1_hash = mmh3.hash(user1)
user2_hash = mmh3.hash(user2)

hll = HLL(11, 5) # log2m=11, regwidth=5

hll.add_raw(user1_hash)
hll.add_raw(user2_hash)
hll.add_raw(user2_hash)
hll.add_raw(user2_hash)

usercount = hll.cardinality()

print(usercount)
```

<details><summary><strong>log2m=11, regwidth=5 ?</strong></summary>
    These values define some of the characteristics of the HLL set, which affect
    (e.g.) how accurate the HLL set will be. A default register width of 5 (regwidth = 5),
    with a log2m of 11 allows adding a maximum number of
    
\begin{align}1.6x10^{12}= 1600000000000\end{align}
    
items to a single set (with a margin of cardinality error of ±2.30%)
</details>



<!-- #region -->
HLL has two [modes of operations](https://github.com/citusdata/postgresql-hll/blob/master/REFERENCE.md#metadata-functions) that increase accuracy for small sets
- Explicit
- and Sparse

<div class="alert alert-info" role="alert" style="color: black;">
    <details><summary><strong>Turn off explicit mode</strong></summary>
        <br>
        <div style="width:500px">
<p>Because Explicit mode stores Hashes fully,  
it cannot provide any benefits for privacy,  
    which is why it should be disabled.</p>
        </div>
    </details>
</div>



Repeat the process above with explicit mode turned off:
<!-- #endregion -->

```python
hll = HLL(11, 5, 0, 1) # log2m=11, regwidth=5, explicit=off, sparse=auto)
hll.add_raw(user1_hash)
hll.add_raw(user2_hash)
hll.add_raw(user2_hash)
hll.add_raw(user2_hash)

usercount = hll.cardinality()
print(usercount)
```

**Union of two sets**


At any point, we can update a hll set with new items  
(which is why HLL works well in streaming contexts):

```python
user3 = 'baz'
user3_hash = mmh3.hash(user3)
hll.add_raw(user3_hash)
usercount = hll.cardinality()
print(usercount)
```

.. but separate HLL sets may be created independently,  
to be only merged finally for cardinality estimation:

```python
hll_params = (11, 5, 0, 1)

hll1 = HLL(*hll_params)
hll2 = HLL(*hll_params)
hll3 = HLL(*hll_params)

hll1.add_raw(mmh3.hash('foo'))
hll2.add_raw(mmh3.hash('bar'))
hll3.add_raw(mmh3.hash('baz'))

hll1.union(hll2) # modifies hll1 to contain the union
hll1.union(hll3)

usercount = hll1.cardinality()
print(usercount)
```

<div class="alert alert-info" role="alert" style="color: black;">
    <details><summary><strong>Parallelized computation</strong></summary>
        <br>
        <div style="width:500px">
            <ul>
            <li>The lossless union of HLL sets allows parallelized computation</li> 
            <li>The inability to parallelize computation is one of the main limitations of regular sets, and it is typically referred to with
            the <a href="https://en.wikipedia.org/wiki/Count-distinct_problem">Count-Distinct Problem</a></li>
            </ul>
        </div>
    </details>
</div>


## Counting Examples: 2-Components


<div style="width:500px">
What is counted entirely depends on the application context.

Typically, this will result in a <strong>2-component setup</strong> with
<ul>
    <li>the <strong>first component</strong> as a reference <i>for the count context, e.g.:</i></li>
    <ul><li>coordinates, areas etc. (lat, lng)</li>
        <li>terms</li>
        <li>dates or times</li>
        <li>groups/origins (e.g. different social networks)</li>
    </ul>
    <li>the <strong>second component</strong> as the HLL set, for counting different metrics, e.g.</li>
    <ul><li>Post Count (PC)</li>
        <li>User Count (UC)</li>
        <li>User Days (PUC)</li>
    </ul>
    </ul>
</div>


<div class="alert alert-info" role="alert" style="color: black;">
    <details><summary><strong>Further information</strong></summary>
        <br>
        <div style="width:500px"><ul>
<li>The above 'convention' for privacy-aware visual analytics has been published in <a href="https://www.mdpi.com/2220-9964/9/10/607">the paper referenced at the beginning of the notebook</a></li>
<li>for demonstration purposes, different examples of this 2-component structure are implemented <a href="https://gitlab.vgiscience.de/lbsn/structure/hlldb/-/blob/master/structure/98-create-tables.sql">in a Postgres database</a></li>
<li>more complex examples, such as composite metrics, allow for a large variety of visualizations</li>
            <li> Adapting existing visualization techniques to the privacy-aware structure requires effort, <i>most</i> but not all techniques are compatible
            </ul>
</div>
    </details>
</div>            


## YFCC100M Example: Monitoring of Worldwide User Days

<!-- #region -->
A **User Day** refers to a common metric used in visual analytics.

Each user is counted once per day.

This is commonly done by concatentation of a unique user identifier 
and the unique day of activity, e.g.:
```python
userdays_set = set()
userday_sample = "96117893@N05" + "2012-04-14"
userdays_set.add(userday_sample)
print(len(userdays_set))
> 1
```
<!-- #endregion -->

We have create an example processing pipeline for counting user days world wide, using the [Flickr YFCC100M dataset](http://projects.dfki.uni-kl.de/yfcc100m/),
which contains about 50 Million georeferenced photos uploaded by Flickr users with a Creative Commons License.

The full processing pipeline can be viewed in [a separate collection of notebooks](https://gitlab.vgiscience.de/ad/yfcc_gridagg).

In the following, we will use the HLL data to replicate these visuals.

We'll use python methods stored and loaded from modules.


### Data collection granularity

There's a difference between collecting and visualizing data.

During data collection, information can be stored with a higher  
information granularity, to allow _some_ flexibility for  
tuning visualizations.

In the YFCC100M Example, we "collect" data at a GeoHash granularity of 5  
(about 3 km "snapping distance" for coordinates).

During data visualization, these coordinates and HLL sets are aggregated  
further to a worldwide grid of 100x100 km bins.

Have a look at the data structure at data collection time.

```python
from pathlib import Path

OUTPUT = Path.cwd() / "out"
OUTPUT.mkdir(exist_ok=True)
TMP = Path.cwd() / "tmp"
TMP.mkdir(exist_ok=True)
```

```python
%load_ext autoreload
%autoreload 2
```

```python
import sys

module_path = str(Path.cwd().parents[0] / "py")
if module_path not in sys.path:
    sys.path.append(module_path)
from modules import tools
```

Load the full benchmark dataset.

```python
filename = "yfcc_latlng.csv"
yfcc_input_csv_path = TMP / filename
if not yfcc_input_csv_path.exists():
    sample_url = tools.get_sample_url()
    yfcc_csv_url = f'{sample_url}/download?path=%2F&files={filename}'
    tools.get_stream_file(url=yfcc_csv_url, path=yfcc_input_csv_path)
```

Load csv data to pandas dataframe.

```python
%%time
import pandas as pd
dtypes = {'latitude': float, 'longitude': float}
df = pd.read_csv(
    yfcc_input_csv_path, dtype=dtypes, encoding='utf-8')
print(len(df))
```

The dataset contains a total number of 451,949 distinct coordinates,  
at a GeoHash precision of 5 (~2500 Meters snapping distance.)

```python
df.head()
```

**Calculate a single HLL cardinality (first row):**

```python
sample_hll_set = df.loc[0, "date_hll"]
```

```python
from python_hll.util import NumberUtil
hex_string = sample_hll_set[2:]
print(sample_hll_set[2:])
hll = HLL.from_bytes(NumberUtil.from_hex(hex_string, 0, len(hex_string)))
```

```python
hll.cardinality()
```

The two components of the structure are highlighted below.

```python
tools.display_header_stats(
    df.head(),
    base_cols=["latitude", "longitude"],
    metric_cols=["date_hll"])
```

<p>The color refers to the two components:</p>
<div style="text-align:center;width:100%;">
<div style="background:#8FBC8F;width:220px;display:inline-block;vertical-align: top;*display:inline;padding:5px;">
    <b>1</b> - The (spatial) <i>context</i> for HLL sets (called the 'base' in <a href="https://lbsn.vgiscience.org/concept-structure/">lbsn structure</a>)
</div>
<div style="background:#FFF8DC;width:220px;display:inline-block;vertical-align: top;*display:inline;padding:5px;">
    <b>2</b> - The HLL set (called the 'overlay')
</div>
</div>


<div class="alert alert-info" role="alert" style="color: black;">
    <details><summary><strong>Compare RAW data</strong></summary>
        <div style="width:500px"><ul>
        <li>Unlike RAW data, the user-id and the distinct dates are stored in the HLL sets above (date_hll)</li>
            <li>When using RAW data, storing the user-id and date, to count userdays, would also mean<br>
            that each user can be tracked across different locations and times</li>
            <li>HLL allows to prevent such misuse of data.</li>
            </ul>
</div>
    </details>
</div>     


### Data visualization granularity

- there're many ways to visualize data
- typically, visualizations will present  
  information at a information granularity  
  that is suited for the specific application  
  context
- To aggregate information from HLL data,  
  individual HLL sets need to be merged  
  (a union operation)
- For the YFCC100M Example, the process  
  to union HLL sets is shown [here](https://ad.vgiscience.org/yfcc_gridagg/03_yfcc_gridagg_hll.html)
- We're going to load and visualize this  
  aggregate data below

```python
from modules import yfcc
```

```python
filename = "yfcc_all_est_benchmark.csv"
yfcc_benchmark_csv_path = TMP / filename
if not yfcc_benchmark_csv_path.exists():
    yfcc_csv_url = f'{sample_url}/download?path=%2F&files={filename}'
    tools.get_stream_file(
        url=yfcc_csv_url, path=yfcc_benchmark_csv_path)
```

```python
grid = yfcc.grid_agg_fromcsv(
    yfcc_benchmark_csv_path,
    columns=["xbin", "ybin", "userdays_hll"])
```

```python
grid[grid["userdays_hll"].notna()].head()
```

```python
tools.display_header_stats(
    grid[grid["userdays_hll"].notna()].head(),
    base_cols=["geometry"],
    metric_cols=["userdays_hll"])
```

<div class="alert alert-info" role="alert" style="color: black;">
    <details><summary><strong>Description of columns</strong></summary>
        <div style="width:500px"><ul>
        <li><strong>geometry</strong>: A WKT-Polygon for the area (100x100km bin)</li>  
        <li><strong>userdays_hll</strong>: The HLL set, containing all userdays measured for the respective area</li> 
        <li><strong>xbin/ybin</strong>: The DataFrame (multi-) index, each 100x100km bin has a unique x and y number.</li>
            </ul>
</div>
    </details>
</div>     


**Calculate the cardinality for all bins and store in extra column:**

```python
def hll_from_byte(hll_set: str):
    """Return HLL set from binary representation"""
    hex_string = hll_set[2:]
    return HLL.from_bytes(
        NumberUtil.from_hex(
            hex_string, 0, len(hex_string)))
```

```python
def cardinality_from_hll(hll_set, total, ix=[0]):
    """Turn binary hll into HLL set and return cardinality"""
    ix[0] += 1
    loaded = ix[0]
    hll = hll_from_byte(hll_set)
    if (loaded % 100 == 0) or (total == loaded):
        tools.stream_progress_basic(
            total, loaded)
    return hll.cardinality() - 1
```

<div class="alert alert-info" role="alert" style="color: black;">
    <details><summary><strong>Progress reporting in Jupyter</strong></summary>
        <div style="width:500px">
        <ul>
            <li><code>tools.stream_progress_basic()</code>: For long running processes, progress should be reported.</li>  
            <li>Have a look at the function above, defined in <code>/py/modules/tools.py</code></li> 
            <li><code>ix=[0]</code>? Defines a muteable kwarg, which gets allocated once, for the function, and is then used it to keep track of the progress</li>
            <li><code>loaded % 100 == 0</code>? The % is the modulo operator, which is used to limit update ferquency to every 100th step (where the modulo evaluates to 0)</li>
        </ul>
</div>
    </details>
</div>     


Calculate cardinality for all bins.

<div class="alert alert-info" role="alert" style="color: black;">
This process will take some time (about 3-5 Minutes),  
due to using the slow(er) python-hll implementation.
</div>

```python
%%time
grid_cached = Path(TMP / "grid.pkl")
if grid_cached.exists():
    grid = pd.read_pickle(grid_cached)
else:
    mask = grid["userdays_hll"].notna()
    grid["userdays_est"] = 0
    total = len(grid[mask].index)
    grid.loc[mask, 'userdays_est'] = grid[mask].apply(
            lambda x: cardinality_from_hll(
               x["userdays_hll"], total),
            axis=1)
```

<div class="alert alert-info" role="alert" style="color: black;"><details><summary><strong>RuntimeWarning?</strong> </summary>
    <div style="width:500px"><ul>
        <li><a href="https://github.com/AdRoll/python-hll">python-hll library</a> is in a very early stage of development</li>  
        <li>it is not fully compatible with the <a href="https://github.com/citusdata/postgresql-hll">citus hll implementation</a> in postgres</li> 
        <li>The shown <a href="https://tech.nextroll.com/blog/dev/2019/10/01/hll-in-python.html">RuntimeWarning (Overflow)</a> is one of the issues that need to be resolved in the future</li>
        <li>If you run this notebook locally, it is recommended to use <a href="https://gitlab.vgiscience.de/lbsn/databases/pg-hll-empty">pg-hll-empty</a> for
        any hll calculations, as is shown (e.g.) in the original <a href="https://gitlab.vgiscience.de/ad/yfcc_gridagg">YFCC100M notebooks</a>.</li>
        </ul>
</div>
</details>
</div>


<div class="alert alert-info" role="alert" style="color: black;"><details><summary><code>grid[mask].apply()</code>?</summary>
    <div style="width:500px"><ul>
        <li>This is another example of boolean masking with pandas</li>
        <li><code>grid["userdays_hll"].notna()</code> creates a list (a <code>pd.Series</code>) of True/False values</li>
        <li><code>grid.loc[mask, 'userdays_est']</code> uses the index of the mask, to select indexes, and the column 'userdays_est', to assign values</li>
        </ul>
    </div>
</details></div>


From now on, disable warnings:

```python
import warnings 
warnings.filterwarnings('ignore')
```

Write a `pickle` of the dataframe, to cache for repeated use:

```python
if not grid_cached.exists():
    grid.to_pickle(grid_cached)
```

**Have a look at the cardinality below.**

```python
grid[grid["userdays_hll"].notna()].head()
```

#### Visualize the grid, using prepared methods


Temporary fix to prevent proj-path warning:

```python
import sys, os
os.environ["PROJ_LIB"] = str(Path(sys.executable).parents[1] / 'share' / 'proj')
```

Activate the bokeh holoviews extension.

```python
from modules import grid as yfcc_grid
import holoviews as hv
hv.notebook_extension('bokeh')
```

.. visualize the grid, **as an interactive map**, shown in the notebook:

```python
gv_layers = yfcc_grid.plot_interactive(
    grid, title=f'YFCC User Days (estimated) per 100 km grid',
    metric="userdays_est")
```

```python
gv_layers
```

.. or, **store as an external HTML file**, to be viewed separately (note the `output=OUTPUT` that enabled HTML export):

```python
yfcc_grid.plot_interactive(
    grid, title=f'YFCC User Days (estimated) per 100 km grid', metric="userdays_est",
    store_html="yfcc_userdays_est", output=OUTPUT)
```

<div class="alert alert-warning" role="alert" style="color: black;">
    <details><summary><strong>Open HTML</strong></summary>
    <ul>
        <li>go to notebooks/out</li>
        <li>.. and open yfcc_userdays_est.html with <br><strong>Right-Click > Open In New Browser-Tab</strong></li>
    </ul>
    </details>
</div>


## Working with HLL data: Intersection Example

HLL is not pure statistic data.

There is _some_ flexibility to explore HLL sets further,  
by using the **union** and **intersection** functionality.

We're going to explore this functionality below.

The task is to union all HLL sets for userdays for:
- Germany
- France
- UK

.. and finally visualizing total **user counts** for these countries  
and the subset of users that have visited two or all of these
countries.


<div class="alert alert-info" role="alert" style="color: black;">
    <details><summary><strong>Python GIS Operations</strong></summary>
        <div style="width:500px"><ul>
        <li>The code below is not any more complex than working with RAW data</li>  
        <li>We'll learn how to use some common GIS operations in python below</li> 
            </ul>
</div>
    </details>
</div>     


<div class="alert alert-info" role="alert" style="color: black;">
    <details><summary><strong>Why user counts, and not user days?</strong></summary>
        <div style="width:500px"><ul>
            <li>Userdays (eg. in the form of <code>user-id||date</code>) are not suited to study visitation intersection between countries.</li>  
        <li>In other words, it is unlikely that one user has visited more than one country on a single day.</li> 
        <li>No or little intersection would be found by using user days.</li>
        <li>Using hashed user ids (converted to HLL) instead allows to count the users having visited two or more countries</li>
            </ul>
</div>
    </details>
</div>   


Load user hll sets:

```python
grid = yfcc.grid_agg_fromcsv(
    TMP / "yfcc_all_est_benchmark.csv",
    columns=["xbin", "ybin", "usercount_hll"])
```

Preview:

```python
grid[grid["usercount_hll"].notna()].head()
```

### Union hll sets for Countries UK, DE and FR


#### Selection of grid cells based on country geometry


Load country geometry:

```python
import geopandas as gp
world = gp.read_file(
    gp.datasets.get_path('naturalearth_lowres'),
    crs=yfcc.CRS_WGS)
world = world.to_crs(
    yfcc.CRS_PROJ)
```

<div class="alert alert-info" role="alert" style="color: black;"><details><summary><strong><code>gp.datasets.get_path()</code>?</strong></summary>
<ul>
    <li>Some data is provided by Geopandas</li>
    <li>One of these datasets is the <a href="https://www.naturalearthdata.com/downloads/">natural earth lowres countries</a> shapefile</li>
    <li>.. but you can load any Shapefile or GIS data here.</li>
</ul>
</details></div>


Select geometry for DE, FR and UK

```python
de = world[world['name'] == "Germany"]
uk = world[world['name'] == "United Kingdom"]
fr = world[world['name'] == "France"]
```

<div class="alert alert-warning" role="alert" style="color: black;">
    <details><summary><strong>Select different countries</strong></summary>
    <ul>
        <li>Optionally: Modify the list of countries to adapt visualizations below.</li>
    </ul>
    </details>
</div>


Drop French territory of French Guiana:

```python
fr = fr.explode().iloc[1:].dissolve(by='name')
fr.plot()
```

**Preview selection.** 

Note that the territory of France includes Corsica,  
which is acceptable for the example use case.

```python
import matplotlib.pyplot as plt
fig, (ax1, ax2, ax3) = plt.subplots(1, 3)
fig.suptitle(
    'Areas to test for common visitors in the hll benchmark dataset')
for ax in (ax1, ax2, ax3):
    ax.set_axis_off()
ax1.title.set_text('DE')
ax2.title.set_text('UK')
ax3.title.set_text('FR')
de.plot(ax=ax1)
uk.plot(ax=ax2)
fr.plot(ax=ax3)
```

#### Intersection with grid


Since grid size is 100 km, 
direct intersection will yield some error rate (in this case, called _[MAUP](https://en.wikipedia.org/wiki/Modifiable_areal_unit_problem)_).  
Use centroid of grid cells to select bins based on country geometry.  

Get centroids as Geoseries and turn into GeoDataFrame:

```python
centroid_grid = grid.centroid.reset_index()
centroid_grid.set_index(["xbin", "ybin"], inplace=True)
```

```python
grid.centroid
```

Define function to intersection, using geopandas [sjoin (spatial join)](https://geopandas.org/reference/geopandas.sjoin.html)

```python
from geopandas.tools import sjoin
def intersect_grid_centroids(
    grid: gp.GeoDataFrame, 
    intersect_gdf: gp.GeoDataFrame):
    """Return grid centroids from grid that 
    intersect with intersect_gdf
    """
    centroid_grid = gp.GeoDataFrame(
        grid.centroid)
    centroid_grid.rename(
        columns={0:'geometry'},
        inplace=True)
    centroid_grid.set_geometry(
        'geometry', crs=grid.crs, 
        inplace=True)
    grid_intersect = sjoin(
        centroid_grid, intersect_gdf, 
        how='right')
    grid_intersect.set_index(
        ["index_left0", "index_left1"],
        inplace=True)
    grid_intersect.index.names = ['xbin','ybin']
    return grid.loc[grid_intersect.index]
```

Run intersection for countries:

```python
grid_de = intersect_grid_centroids(
    grid=grid, intersect_gdf=de)
grid_de.plot(edgecolor='white')
```

```python
grid_fr = intersect_grid_centroids(
    grid=grid, intersect_gdf=fr)
grid_fr.plot(edgecolor='white')
```

```python
grid_uk = intersect_grid_centroids(
    grid=grid, intersect_gdf=uk)
grid_uk.plot(edgecolor='white')
```

#### Plot preview of selected grid cells (bins)


Define colors:

```python
color_de = "#fc4f30"
color_fr = "#008fd5"
color_uk = "#6d904f"
```

Define map boundary:

```python
bbox_europe = (
    -9.580078, 41.571384,
    16.611328, 59.714117)
minx, miny = yfcc.PROJ_TRANSFORMER.transform(
    bbox_europe[0], bbox_europe[1])
maxx, maxy = yfcc.PROJ_TRANSFORMER.transform(
    bbox_europe[2], bbox_europe[3])
buf = 100000
```

```python
from typing import List, Optional
def plot_map(
    grid: gp.GeoDataFrame, sel_grids: List[gp.GeoDataFrame],
    sel_colors: List[str],
    title: Optional[str] = None, save_fig: Optional[str] = None,
    ax = None, output: Optional[Path] = OUTPUT):
    """Plot GeoDataFrame with matplotlib backend, optionaly export as png"""
    if not ax:
        fig, ax = plt.subplots(1, 1, figsize=(5, 6))
    ax.set_xlim(minx-buf, maxx+buf)
    ax.set_ylim(miny-buf, maxy+buf)
    if title:
        ax.set_title(title, fontsize=12)
    for ix, sel_grid in enumerate(sel_grids):
        sel_grid.plot(
            ax=ax,
            color=sel_colors[ix],
            edgecolor='white',
            alpha=0.9)
    grid.boundary.plot(
        ax=ax,
        edgecolor='black', 
        linewidth=0.1,
        alpha=0.9)
    # combine with world geometry
    world.plot(
        ax=ax, color='none', edgecolor='black', linewidth=0.3)
    # turn axis off
    ax.set_axis_off()
    if not save_fig:
        return
    fig.savefig(output / save_fig, dpi=300, format='PNG',
               bbox_inches='tight', pad_inches=1)
```

```python
sel_grids=[grid_de, grid_uk, grid_fr]
sel_colors=[color_de, color_uk, color_fr]
plot_map(
    grid=grid, sel_grids=sel_grids, 
    sel_colors=sel_colors,
    title='Grid selection for DE, FR and UK',
    save_fig='grid_selection_countries.png')
```

### Union of hll sets

```python
def union_hll(hll: HLL, hll2):
    """Union of two HLL sets. The first HLL set will be modified in-place."""
    hll.union(hll2)
    
def union_all_hll(
    hll_series: pd.Series, cardinality: bool = True) -> pd.Series:
    """HLL Union and (optional) cardinality estimation from series of hll sets

        Args:
        hll_series: Indexed series (bins) of hll sets. 
        cardinality: If True, returns cardinality (counts). Otherwise,
            the unioned hll set will be returned.
    """
    
    hll_set = None
    for hll_set_str in hll_series.values.tolist():
        if hll_set is None:
            # set first hll set
            hll_set = hll_from_byte(hll_set_str)
            continue
        hll_set2 = hll_from_byte(hll_set_str)
        union_hll(hll_set, hll_set2)
    return hll_set.cardinality()
```

Calculate distinct users per country:

```python
grid_sel = {
    "de": grid_de,
    "uk": grid_uk,
    "fr": grid_fr
}
distinct_users_total = {}
for country, grid_sel in grid_sel.items():
    # drop bins with no values
    cardinality_total = union_all_hll(
        grid_sel["usercount_hll"].dropna())
    distinct_users_total[country] = cardinality_total
    print(
        f"{distinct_users_total[country]} distinct users "
        f"who shared YFCC100M photos in {country.upper()}")
```

### Calculate intersection (common visitors)

<!-- #region -->
According to the [Union-intersection-principle](https://en.wikipedia.org/wiki/Inclusion%E2%80%93exclusion_principle):

$|A \cup B| = |A| + |B| - |A \cap B|$

which can also be written as:

$|A \cap B| = |A| + |B| - |A \cup B|$

Therefore, unions can be used to calculate intersection. Calculate $|DE \cup FR|$, $|DE \cup UK|$ and $|UK \cup FR|$, i.e.:
```python
IntersectionCount = 
hll_cardinality(grid_de)::int +
hll_cardinality(grid_fr)::int - 
hll_cardinality(hll_union(grid_de, grid_fr)
```
<!-- #endregion -->

**First, prepare combination for different sets.**

```python tags=["active-ipynb"]
union_de_fr = pd.concat([grid_de, grid_fr])
union_de_uk = pd.concat([grid_de, grid_uk])
union_uk_fr = pd.concat([grid_uk, grid_fr])
```

**Calculate union**

```python tags=["active-ipynb"]
grid_sel = {
    "de-uk": union_de_uk,
    "de-fr": union_de_fr,
    "uk-fr": union_uk_fr
}
distinct_common = {}
for country_tuple, grid_sel in grid_sel.items():
    cardinality = union_all_hll(
        grid_sel["usercount_hll"].dropna())
    distinct_common[country_tuple] = cardinality
    print(
        f"{distinct_common[country_tuple]} distinct total users "
        f"who shared YFCC100M photos from either {country_tuple.split('-')[0]} "
        f"or {country_tuple.split('-')[1]} (union)")
```

**Calculate intersection**

```python tags=["active-ipynb"]
distinct_intersection = {}
for a, b in [("de", "uk"), ("de", "fr"), ("uk", "fr")]:
    a_total = distinct_users_total[a]
    b_total = distinct_users_total[b]
    common_ref = f'{a}-{b}'
    intersection_count = a_total + b_total - distinct_common[common_ref]
    distinct_intersection[common_ref] = intersection_count
    print(
        f"{distinct_intersection[common_ref]} distinct users "
        f"who shared YFCC100M photos from {a} and {b} (intersection)")
```

Finally, lets get the number of users who have shared pictures from all three countries, based on the [formula for three sets](https://en.wikipedia.org/wiki/Inclusion%E2%80%93exclusion_principle):

$|A \cup B \cup C| = |A| + |B| + |C| - |A \cap B| - |A \cap C| - |B \cap C| + |A \cap B \cap C|$

which can also be written as:

$|A \cap B \cap C| = |A \cup B \cup C| - |A| - |B| - |C| + |A \cap B| + |A \cap C| + |B \cap C|$


**Calculate distinct users of all three countries:**

```python tags=["active-ipynb"]
union_de_fr_uk = pd.concat(
    [grid_de, grid_fr, grid_uk])
cardinality = union_all_hll(
    union_de_fr_uk["usercount_hll"].dropna())
union_count_all = cardinality
union_count_all
```

```python tags=["active-ipynb"]
country_a = "de"
country_b = "uk"
country_c = "fr"
```

**Calculate intersection**

```python tags=["active-ipynb"]
intersection_count_all = union_count_all - \
    distinct_users_total[country_a] - \
    distinct_users_total[country_b] - \
    distinct_users_total[country_c] + \
    distinct_intersection[f'{country_a}-{country_b}'] + \
    distinct_intersection[f'{country_a}-{country_c}'] + \
    distinct_intersection[f'{country_b}-{country_c}']
    
print(intersection_count_all)
```

### Visualize intersection using Venn diagram


Since we're going to visualize this with [matplotlib-venn](https://github.com/konstantint/matplotlib-venn),
we need the following variables:

```python tags=["active-ipynb"]
from matplotlib_venn import venn3, venn3_circles
v = venn3(
    subsets=(
        500,
        500, 
        100,
        500,
        100,
        100,
        10),
    set_labels = ('A', 'B', 'C'))
v.get_label_by_id('100').set_text('Abc')
v.get_label_by_id('010').set_text('aBc')
v.get_label_by_id('001').set_text('abC')
v.get_label_by_id('110').set_text('ABc')
v.get_label_by_id('101').set_text('AbC')
v.get_label_by_id('011').set_text('aBC')
v.get_label_by_id('111').set_text('ABC')
plt.show()
```

We already have `ABC`, the other values can be calulated:

```python tags=["active-ipynb"]
ABC = intersection_count_all
```

```python tags=["active-ipynb"]
ABc = distinct_intersection[f'{country_a}-{country_b}'] - ABC
```

```python tags=["active-ipynb"]
aBC = distinct_intersection[f'{country_b}-{country_c}'] - ABC
```

```python tags=["active-ipynb"]
AbC = distinct_intersection[f'{country_a}-{country_c}'] - ABC
```

```python tags=["active-ipynb"]
Abc = distinct_users_total[country_a] - ABc - AbC + ABC
```

```python tags=["active-ipynb"]
aBc = distinct_users_total[country_b] - ABc - aBC + ABC
```

```python tags=["active-ipynb"]
abC = distinct_users_total[country_c] - aBC - AbC + ABC
```

## Illustrate intersection (Venn diagram)

Order of values handed over: Abc, aBc, ABc, abC, AbC, aBC, ABC

Define Function to plot Venn Diagram.

```python
from typing import Tuple

def plot_venn(
    subset_sizes: List[int],
    colors: List[str], 
    names: List[str],
    subset_sizes_raw: List[int] = None,
    total_sizes: List[Tuple[int, int]] = None,
    ax = None,
    title: str = None):
    """Plot Venn Diagram"""
    if not ax:
        fig, ax = plt.subplots(1, 1, figsize=(5,5))
    set_labels = (
        'A', 'B', 'C')
    v = venn3(
        subsets=(
            [subset_size for subset_size in subset_sizes]),
        set_labels = set_labels,
        ax=ax)    
    for ix, idx in enumerate(
        ['100', '010', '001']):
        v.get_patch_by_id(
            idx).set_color(colors[ix])
        v.get_patch_by_id(
            idx).set_alpha(0.8)
        v.get_label_by_id(
            set_labels[ix]).set_text(
            names[ix])
        if not total_sizes:
            continue
        raw_count = total_sizes[ix][0]
        hll_count = total_sizes[ix][1]
        difference = abs(raw_count-hll_count)
        v.get_label_by_id(set_labels[ix]).set_text(
            f'{names[ix]}, {hll_count},\n'
            f'{difference/(raw_count/100):+.1f}%')
    if subset_sizes_raw:
        for ix, idx in enumerate(
            ['100', '010', None, '001']):
            if not idx:
                continue
            dif_abs = subset_sizes[ix] - subset_sizes_raw[ix]
            dif_perc = dif_abs / (subset_sizes_raw[ix] / 100)
            v.get_label_by_id(idx).set_text(
                f'{subset_sizes[ix]}\n{dif_perc:+.1f}%')            
    label_ids = [
        '100', '010', '001',
        '110', '101', '011',
        '111', 'A', 'B', 'C']
    for label_id in label_ids:
        v.get_label_by_id(
            label_id).set_fontsize(14)
    # draw borders
    c = venn3_circles(
        subsets=(
            [subset_size for subset_size in subset_sizes]),
        linestyle='dashed',
        lw=1,
        ax=ax)
    if title:
        ax.title.set_text(title)
```

Plot Venn Diagram:

```python tags=["active-ipynb"]
subset_sizes = [
    Abc, aBc, ABc, abC, AbC, aBC, ABC]
colors = [
    color_de, color_uk, color_fr]
names = [
    'Germany', 'United Kingdom','France']
plot_venn(
    subset_sizes=subset_sizes,
    colors=colors,
    names=names,
    title="Common User Count")
```

**Combine Map & Venn Diagram**

```python tags=["active-ipynb"]
# figure with subplot (1 row, 2 columns)
fig, ax = plt.subplots(1, 2, figsize=(10, 24))
plot_map(
    grid=grid, sel_grids=sel_grids, 
    sel_colors=sel_colors, ax=ax[0])
plot_venn(
    subset_sizes=subset_sizes,
    colors=colors,
    names=names,
    ax=ax[1])
# store as png
fig.savefig(
    OUTPUT / "hll_intersection_ukdefr.png", dpi=300, format='PNG',
    bbox_inches='tight', pad_inches=1)
```

<div class="alert alert-info" role="alert" style="color: black;">
    <details><summary><strong>Error rates</strong></summary>
        <div style="width:500px"><ul>
        <li>Guaranteed error rates (2-3%) apply to HLL any union operation</li>  
        <li>When intersecting HLL sets, error rates may <strong>increase</strong>, depending on the size of sets</li> 
        <li>This is a limitation, but also provides a protection that prevents identifying individual users through intersection</li>
        <li>Have a look at the <a href="https://ad.vgiscience.org/yfcc_gridagg/04_interpretation.html">YFCC100M paper notebook</a>, where we have created the Venn diagram with raw and hll data, illustrating error rates</li>
            </ul>
</div>
    </details>
</div>     


## Create Notebook HTML

**Save the Notebook**, then execute the following cell to convert to HTML (archive format).

```python
!jupyter nbconvert --to html_toc \
    --output-dir=../resources/html/ ./02_hll_intro.ipynb \
    --template=../nbconvert.tpl \
    --ExtractOutputPreprocessor.enabled=False >&- 2>&-
```

## Summary


<div class="alert alert-warning" role="alert" style="color: black;">
    <details><summary><strong>Notes</strong></summary>
        <div style="width:500px">
        <ul>
            <li><a href="https://github.com/AdRoll/python-hll/">Python-hll</a>, the <a href="https://lbsn.vgiscience.org/">lbsn structure</a> and other tools shown in this work are in an early stage of development</li>
            <li>Adaption of workflows to the privacy-aware data structure requires effort</li>
            <li>Many, but not all visualizations are suited to be used with HLL data</li>
            <li>The <a href="https://lbsn.vgiscience.org/">lbsn structure</a> is a <strong>convention</strong>, there're many different ways to use and apply HLL in visual analytics. With the structure, we have specifically looked at the utility of HLL to privacy.</li>
           </ul>
        </div>
    </details>
</div>


<div class="alert alert-info" role="alert" style="color: black;">
    <details><summary><strong>Further work</strong></summary>
        <div style="width:500px">
        <ul>
            <li>Have a look at the <a href="https://lbsn.vgiscience.org/yfcc-introduction/">tutorial section</a></li>
            <li>Try to replicate the <a href="https://lbsn.vgiscience.org/environment/">Minimal example</a>, which explains how to start <code>rawdb</code> and <code>hlldb</code> locally using Docker</li>
            <li>Clone and run <a href="https://gitlab.vgiscience.de/ad/yfcc_gridagg">YFCC100M grid aggregation notebooks</a>, which demonstrate the full pipeline of importing, processing and visualizing data</li>
           </ul>
        </div>
    </details>
</div>


```python tags=["hidden"]
root_packages = [
    'python', 'colorcet', 'holoviews', 'ipywidgets', 'geoviews', 'hvplot',
    'geopandas', 'mapclassify', 'memory_profiler', 'python-dotenv', 'shapely',
    'matplotlib', 'sklearn', 'numpy', 'pandas', 'bokeh', 'fiona',
    'matplotlib-venn', 'xarray', 'panel']
tools.package_report(root_packages)
```

```python

```