Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
hpc-compendium
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Deploy
Releases
Package Registry
Container Registry
Model registry
Operate
Terraform modules
Monitor
Incidents
Service Desk
Analyze
Value stream analytics
Contributor analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Terms and privacy
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
ZIH
hpcsupport
hpc-compendium
Commits
ef94e413
Commit
ef94e413
authored
1 year ago
by
Natalie Breidenbach
Browse files
Options
Downloads
Patches
Plain Diff
Update distributed_training.md
parent
d98d3720
No related branches found
Branches containing commit
No related tags found
2 merge requests
!938
Automated merge from preview to main
,
!936
Update to Five-Cluster-Operation
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
doc.zih.tu-dresden.de/docs/software/distributed_training.md
+5
-7
5 additions, 7 deletions
doc.zih.tu-dresden.de/docs/software/distributed_training.md
with
5 additions
and
7 deletions
doc.zih.tu-dresden.de/docs/software/distributed_training.md
+
5
−
7
View file @
ef94e413
...
...
@@ -99,13 +99,12 @@ Each worker runs the training loop independently.
TensorFlow is available as a module.
Check for the version.
The `TF_CONFIG` environment variable can be set as a prefix to the command.
Now, run the script on the
partition
`alpha` simultaneously on both nodes:
Now, run the script on the
cluster
`alpha` simultaneously on both nodes:
```bash
#!/bin/bash
#SBATCH --job-name=distr
#SBATCH --partition=alpha
#SBATCH --output=%j.out
#SBATCH --error=%j.err
#SBATCH --mem=64000
...
...
@@ -121,8 +120,8 @@ Each worker runs the training loop independently.
}
NODE_1=$(print_nodelist | awk '{print $1}' | sort -u | head -n 1)
NODE_2=$(print_nodelist | awk '{print $1}' | sort -u | tail -n 1)
IP_1=$(dig +short ${NODE_1}.
taurus.hrsk
.tu-dresden.de)
IP_2=$(dig +short ${NODE_2}.
taurus.hrsk
.tu-dresden.de)
IP_1=$(dig +short ${NODE_1}.
alpha.hpc
.tu-dresden.de)
IP_2=$(dig +short ${NODE_2}.
alpha.hpc
.tu-dresden.de)
module load modenv/hiera
module load modenv/hiera GCC/10.2.0 CUDA/11.1.1 OpenMPI/4.0.5 TensorFlow/2.4.1
...
...
@@ -257,7 +256,7 @@ marie@compute$ module spider Horovod # Check available modules
marie@compute$
module load Horovod/0.19.5-fosscuda-2019b-TensorFlow-2.2.0-Python-3.7.4
```
Or if you want to use Horovod on the
partition
`alpha`
, you can load it with the dependencies:
Or if you want to use Horovod on the
cluster
`alpha`
, you can load it with the dependencies:
```
console
marie@alpha$
module spider Horovod
#Check available modules
...
...
@@ -324,7 +323,7 @@ Hello from: 0
[official examples](https://github.com/horovod/horovod/tree/master/examples)
to parallelize your code.
In Horovod, each GPU gets pinned to a process.
You can easily start your job with the following bash script with four processes on two nodes:
You can easily start your job with the following bash script with four processes on two nodes
using the cluster Power
:
```bash
#!/bin/bash
...
...
@@ -332,7 +331,6 @@ Hello from: 0
#SBATCH --ntasks=4
#SBATCH --ntasks-per-node=2
#SBATCH --gres=gpu:2
#SBATCH --partition=ml
#SBATCH --mem=250G
#SBATCH --time=01:00:00
#SBATCH --output=run_horovod.out
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment