The easiest way is using the [module system](../software/modules.md) and Python virtual environment.
Modules are a way to use frameworks, compilers, loader, libraries, and utilities. The software
environment for the **alpha** partition is available under the name **hiera**:
\<span
style`"font-size: 1em;">The easiest way is using the </span><a href="RuntimeEnvironment#Module_Environments" target="_blank">Modules system</a><span style="font-size: 1em;"> and Python virtual environment. Modules are a way to use frameworks, compilers, loader, libraries, and utilities. The software environment for the </span> =alpha`
\<span style="font-size: 1em;"> partition is available under the name
**hiera**\</span> :
```Bash
module load modenv/hiera
```
module load modenv/hiera
Machine learning frameworks **PyTorch** and **TensorFlow**available for **alpha** partition as
modules with CUDA11, GCC 10 and OpenMPI4:
Machine learning frameworks **PyTorch** and **TensorFlow**available for
**alpha** partition as modules with CUDA11, GCC 10 and OpenMPI4:
srun -p alpha-interactive -N 1 -n 1 --gres=gpu:1 --time=01:00:00 --pty bash # Job submission in alpha nodes with 1 gpu on 1 node.<br /><br />mkdir conda-virtual-environments #create a folder, please use Workspaces! <br />cd conda-virtual-environments #go to folder<br />which python #check which python are you using<br />ml modenv/hiera<br />ml Miniconda3<br />which python #check which python are you using now<br />conda create -n conda-testenv python=3.8 #create virtual environment with the name conda-testenv and Python version 3.8 <br />conda activate conda-testenv #activate conda-testenv virtual environment <br />conda deactivate #Leave the virtual environment
mkdir conda-virtual-environments #create a folder, please use Workspaces!
cd conda-virtual-environments #go to folder
which python #check which python are you using ml modenv/hiera
ml Miniconda3
which python #check which python are you using now
conda create -n conda-testenv python=3.8 #create virtual environment with the name conda-testenv and Python version 3.8
href`"https://taurus.hrsk.tu-dresden.de/jupyter" target="_top"></a>After logging, you can start a new session and configure it. There are simple and advanced forms to set up your session. The =alpha`
partition is available in advanced form. You have to choose the
\<span>alpha\</span> partition in the partition field. The resource
recommendations to allocate are the same as described above for the
batch script example (not confuse `--mem-per-cpu` with `--mem`