From ffa3cfac1e69cf8a00d0875e2008f56c161b70ad Mon Sep 17 00:00:00 2001
From: Andrei Politov <andrei.politov@tu-dresden.de>
Date: Thu, 1 Jul 2021 08:44:54 +0000
Subject: [PATCH] Replace Python.md

---
 doc.zih.tu-dresden.de/docs/software/Python.md | 177 +++++++++---------
 1 file changed, 90 insertions(+), 87 deletions(-)

diff --git a/doc.zih.tu-dresden.de/docs/software/Python.md b/doc.zih.tu-dresden.de/docs/software/Python.md
index 7e1d4743e..d345e749d 100644
--- a/doc.zih.tu-dresden.de/docs/software/Python.md
+++ b/doc.zih.tu-dresden.de/docs/software/Python.md
@@ -1,44 +1,36 @@
 # Python for Data Analytics
 
-
-
 Python is a high-level interpreted language widely used in research and
 science. Using HPC allows you to work with python quicker and more
 effective. Taurus allows working with a lot of available packages and
 libraries which give more useful functionalities and allow use all
 features of Python and to avoid minuses.
 
-**Prerequisites:** To work with Python, you obviously need \<a
-href="Login" target="\_blank">access\</a> for the Taurus system and
-basic knowledge about Python, SLURM system.
+**Prerequisites:** To work with PyTorch you obviously need [access](../access/Login.md) for the 
+Taurus system and basic knowledge about Python, Numpy and SLURM system.
 
-**Aim** of this page is to introduce users on how to start working with
-Python on the \<a href="HPCDA" target="\_self">HPC-DA\</a> system - part
-of the TU Dresden HPC system.
+**Aim** of this page is to introduce users on how to start working with Python on the 
+[HPC-DA](../use_of_hardware/Power9.md) system -  part of the TU Dresden HPC system.
 
-\<span style="font-size: 1em;">There are three main options on how to
-work with Keras and Tensorflow on the HPC-DA: 1. Modules; 2. \</span>
-[JupyterNotebook](JupyterHub)\<span style="font-size: 1em;">; 3.
-\</span> [Containers](TensorFlowContainerOnHPCDA)\<span
-style="font-size: 1em;">. The main way is using the \</span> [Modules
-system](RuntimeEnvironment#Module_Environments)\<span style="font-size:
-1em;"> and Python virtual environment.\</span>
+There are three main options on how to
+work with Keras and Tensorflow on the HPC-DA: 1. Modules; 2. [JupyterNotebook](JupyterHub.md); 
+3.[Containers](containers.md). The main way is using the [Modules
+system](modules.md) and Python virtual environment.
 
-You could work with simple examples in your home directory but according
-to \<a href="HPCStorageConcept2019" target="\_blank">the storage
-concept\</a>** please use \<a href="WorkSpaces"
-target="\_blank">workspaces\</a> for your study and work projects**.
+Note: You could work with simple examples in your home directory but according to 
+[HPCStorageConcept2019](../data_management/HPCStorageConcept2019.md) please use **workspaces** 
+for your study and work projects.
 
 ## Virtual environment
 
 There are two methods of how to work with virtual environments on
 Taurus:
 
-1.** Vitualenv** is a standard Python tool to create isolated Python
-environments. It is the preferred interface for managing installations
-and virtual environments on Taurus and part of the Python modules.
+1. **Vitualenv** is a standard Python tool to create isolated Python environments.
+   It is the preferred interface for 
+   managing installations and virtual environments on Taurus and part of the Python modules.
 
-2\. **Conda** is an alternative method for managing installations and
+2. **Conda** is an alternative method for managing installations and
 virtual environments on Taurus. Conda is an open-source package
 management system and environment management system from Anaconda. The
 conda manager is included in all versions of Anaconda and Miniconda.
@@ -47,25 +39,28 @@ conda manager is included in all versions of Anaconda and Miniconda.
 with the virtual environments previously created with conda tool and
 vice versa! Prefer virtualenv whenever possible.
 
-\<span style="font-size: 1em;">This example shows how to start working
-with \</span> **Virtualenv** \<span style="font-size: 1em;"> and Python
-virtual environment (using the module system) \</span>
+This example shows how to start working
+with **Virtualenv** and Python virtual environment (using the module system)
 
     srun -p ml -N 1 -n 1 -c 7 --mem-per-cpu=5772 --gres=gpu:1 --time=04:00:00 --pty bash   #Job submission in ml nodes with 1 gpu on 1 node.
 
-    mkdir python-environments        # Optional: Create folder. Please use Workspaces!<br /><br />module load modenv/ml            #Changing the environment. Example output: The following have been reloaded with a version change: 1) modenv/scs5 =&gt; modenv/ml<br />ml av Python                     #Check the available modules with Python
-    module load Python               #Load default Python. Example output: Module Python/3.7.4-GCCcore-8.3.0 with 7 dependencies loaded
+    mkdir python-environments        # Optional: Create folder. Please use Workspaces!
+    
+    module load modenv/ml            # Changing the environment. Example output: The following have been reloaded with a version change: 1 modenv/scs5 => modenv/ml
+    ml av Python                     #Check the available modules with Python
+    module load Python               #Load default Python. Example output: Module Python/3.7 4-GCCcore-8.3.0 with 7 dependencies loaded
     which python                                                   #Check which python are you using
     virtualenv --system-site-packages python-environments/envtest  #Create virtual environment
     source python-environments/envtest/bin/activate                #Activate virtual environment. Example output: (envtest) bash-4.2$
     python                                                         #Start python
+    
     from time import gmtime, strftime
-    print(strftime("%Y-%m-%d %H:%M:%S", gmtime()))                 #Example output: 2019-11-18 13:54:16<br /><br />deactivate                                                     # Leave the virtual environment
+    print(strftime("%Y-%m-%d %H:%M:%S", gmtime()))                 #Example output: 2019-11-18 13:54:16
+    deactivate                                                     #Leave the virtual environment
 
-The \<a href="<https://virtualenv.pypa.io/en/latest/>" title="Creation
-of virtual environments.">virtualenv\</a> Python module (Python 3)
-provides support for creating virtual environments with their own site
-directories, optionally isolated from system site directories. Each
+The [virtualenv](https://virtualenv.pypa.io/en/latest/) Python module (Python 3) provides support 
+for creating virtual environments with their own sitedirectories, 
+optionally isolated from system site directories. Each
 virtual environment has its own Python binary (which matches the version
 of the binary that was used to create this environment) and can have its
 own independent set of installed Python packages in its site
@@ -76,11 +71,10 @@ installation. When you switch projects, you can simply create a new
 virtual environment and not have to worry about breaking the packages
 installed in other environments.
 
-In your virtual environment, you can use packages from the [Complete
-List of Modules](SoftwareModulesList) or if you didn't find what you
-need you can install required packages with the command: \<span>pip
-install\</span>. With the command \<span>pip freeze\</span>, you can see
-a list of all installed packages and their versions.
+In your virtual environment, you can use packages from the (Complete
+List of Modules)(SoftwareModulesList) or if you didn't find what you
+need you can install required packages with the command: `pip install`. With the command 
+`pip freeze`, you can see a list of all installed packages and their versions.
 
 This example shows how to start working with **Conda** and virtual
 environment (with using module system)
@@ -99,23 +93,21 @@ environment (with using module system)
 
     conda deactivate                                #Leave the virtual environment
 
-\<span style="font-size: 1em;">You can control where a conda environment
+You can control where a conda environment
 lives by providing a path to a target directory when creating the
 environment. For example, the following command will create a new
-environment in a workspace located in '\<span>scratch\</span>'\</span>
+environment in a workspace located in `scratch`
 
     conda create --prefix /scratch/ws/<name_of_your_workspace>/conda-virtual-environment/<name_of_your_environment>
 
-%RED%Please pay attention<span class="twiki-macro ENDCOLOR"></span>,
+Please pay attention,
 using srun directly on the shell will lead to blocking and launch an
 interactive job. Apart from short test runs, it is **recommended to
-launch your jobs into the background by using \<a href="Slurm"
-target="\_blank">batch jobs\</a>**. For that, you can conveniently put
+launch your jobs into the background by using Slurm**. For that, you can conveniently put
 the parameters directly into the job file which you can submit using
 `sbatch [options] <job file>.`
 
-\<span style="color: #222222; font-size: 1.385em;">Jupyter
-Notebooks\</span>
+## Jupyter Notebooks
 
 Jupyter notebooks are a great way for interactive computing in your web
 browser. Jupyter allows working with data cleaning and transformation,
@@ -125,20 +117,17 @@ course with machine learning.
 There are two general options on how to work Jupyter notebooks using
 HPC.
 
-\<span style="font-size: 1em;">On Taurus, there is \</span>\<a
-href="JupyterHub" target="\_self">jupyterhub\</a>\<span
-style="font-size: 1em;">, where you can simply run your Jupyter notebook
+On Taurus, there is [JupyterHub](JupyterHub.md) where you can simply run your Jupyter notebook 
 on HPC nodes. Also, you can run a remote jupyter server within a sbatch
 GPU job and with the modules and packages you need. The manual server
-setup you can find \</span>\<a href="DeepLearning"
-target="\_blank">here.\</a>
+setup you can find [here](DeepLearning.md).
 
-\<span style="font-size: 1em;">With Jupyterhub you can work with general
+With Jupyterhub you can work with general
 data analytics tools. This is the recommended way to start working with
 the Taurus. However, some special instruments could not be available on
-the Jupyterhub. \</span>\<span style="font-size: 1em;">Keep in mind that
-the remote Jupyter server can offer more freedom with settings and
-approaches.\</span>
+the Jupyterhub. 
+
+**Keep in mind that the remote Jupyter server can offer more freedom with settings and approaches.**
 
 ## MPI for Python
 
@@ -149,12 +138,11 @@ a library specification that allows HPC to pass information between its
 various nodes and clusters. MPI designed to provide access to advanced
 parallel hardware for end-users, library writers and tool developers.
 
-#### Why use MPI?
+### Why use MPI?
 
 MPI provides a powerful, efficient and portable way to express parallel
-programs. \<span style="font-size: 1em;">Among many parallel
-computational models, message-passing has proven to be an effective
-one.\</span>
+programs. 
+Among many parallel computational models, message-passing has proven to be an effective one.
 
 ### Parallel Python with mpi4py
 
@@ -173,8 +161,9 @@ optimized communication of NumPy arrays.
 Mpi4py is included as an extension of the SciPy-bundle modules on
 taurus.
 
-Please check the \<a
-href`"SoftwareModulesList" target="_blank">software module list</a> for the new modules. The availability of the mpi4py in the module you can check by the <b><span>module whatis <name_of_the module> </span></b>command. The =module whatis`
+Please check the SoftwareModulesList for the modules availability. The availability of the mpi4py 
+in the module you can check by 
+the `module whatis <name_of_the module>` command. The `module whatis`
 command displays a short information and included extensions of the
 module.
 
@@ -198,8 +187,7 @@ environment:
 
 ### Horovod
 
-\<a href="<https://github.com/horovod/horovod>"
-target="\_blank">Horovod\</a> is the open source distributed training
+[Horovod](https://github.com/horovod/horovod) is the open source distributed training
 framework for TensorFlow, Keras, PyTorch. It is supposed to make it easy
 to develop distributed deep learning projects and speed them up with
 TensorFlow.
@@ -207,8 +195,7 @@ TensorFlow.
 #### Why use Horovod?
 
 Horovod allows you to easily take a single-GPU TensorFlow and Pytorch
-program and successfully train it on many GPUs \<a
-href="<https://eng.uber.com/horovod/>" target="\_blank">faster\</a>! In
+program and successfully train it on many GPUs! In
 some cases, the MPI model is much more straightforward and requires far
 less code changes than the distributed code from TensorFlow for
 instance, with parameter servers. Horovod uses MPI and NCCL which gives
@@ -218,7 +205,7 @@ in some cases better results than pure TensorFlow and PyTorch.
 
 Horovod is available as a module with **TensorFlow** or **PyTorch**for
 **all** module environments. Please check the [software module
-list](SoftwareModulesList) for the current version of the software.
+list](modules.md) for the current version of the software.
 Horovod can be loaded like other software on the Taurus:
 
     ml av Horovod            #Check available modules with Python
@@ -232,23 +219,41 @@ install Horovod you need to create a virtual environment and load the
 dependencies (e.g. MPI). Installing PyTorch can take a few hours and is
 not recommended
 
-%RED%Note:<span class="twiki-macro ENDCOLOR"></span> You could work with
-simple examples in your home directory but **please use \<a
-href="WorkSpaces" target="\_blank">workspaces\</a> for your study and
-work projects**(see the \<a href="HPCStorageConcept2019"
-target="\_blank">Storage concept\</a>).
+**Note:** You could work with simple examples in your home directory but **please use workspaces 
+for your study and work projects** (see the Storage concept).
 
 Setup:
 
-    srun -N 1 --ntasks-per-node=6 -p ml --time=08:00:00 --pty bash                    #allocate a Slurm job allocation, which is a set of resources (nodes)<br /><br />module load modenv/ml                                                             #Load dependencies by using modules <br />module load OpenMPI/3.1.4-gcccuda-2018b<br />module load Python/3.6.6-fosscuda-2018b<br />module load cuDNN/7.1.4.18-fosscuda-2018b<br />module load CMake/3.11.4-GCCcore-7.3.0<br /><br />virtualenv --system-site-packages &lt;location_for_your_environment&gt;                 #create virtual environment<br /><br />source &lt;location_for_your_environment&gt;/bin/activate                               #activate virtual environment
-
-Or when you need to use conda: \<br />
-
-    srun -N 1 --ntasks-per-node=6 -p ml --time=08:00:00 --pty bash                            #allocate a Slurm job allocation, which is a set of resources (nodes)<br /><br />module load modenv/ml                                                                     #Load dependencies by using modules <br />module load OpenMPI/3.1.4-gcccuda-2018b<br />module load PythonAnaconda/3.6<br />module load cuDNN/7.1.4.18-fosscuda-2018b<br />module load CMake/3.11.4-GCCcore-7.3.0<br /><br />conda create --prefix=&lt;location_for_your_environment&gt; python=3.6 anaconda                 #create virtual environment<br /><br />conda activate  &lt;location_for_your_environment&gt;                                           #activate virtual environment
-
-Install Pytorch (not recommended)\<br />
-
-    cd /tmp<br />git clone https://github.com/pytorch/pytorch                                  #clone Pytorch from the source<br />cd pytorch                                                                    #go to folder<br />git checkout v1.7.1                                                           #Checkout version (example: 1.7.1)<br />git submodule update --init                                                   #Update dependencies<br />python setup.py install                                                       #install it with python<br /><br />cd -
+    srun -N 1 --ntasks-per-node=6 -p ml --time=08:00:00 --pty bash                    #allocate a Slurm job allocation, which is a set of resources (nodes)
+    module load modenv/ml                                                             #Load dependencies by using modules 
+    module load OpenMPI/3.1.4-gcccuda-2018b
+    module load Python/3.6.6-fosscuda-2018b
+    module load cuDNN/7.1.4.18-fosscuda-2018b
+    module load CMake/3.11.4-GCCcore-7.3.0
+    virtualenv --system-site-packages <location_for_your_environment>                 #create virtual environment
+    source <location_for_your_environment>/bin/activate                               #activate virtual environment
+
+Or when you need to use conda:
+
+    srun -N 1 --ntasks-per-node=6 -p ml --time=08:00:00 --pty bash                            #allocate a Slurm job allocation, which is a set of resources (nodes)
+    module load modenv/ml                                                                     #Load dependencies by using modules
+    module load OpenMPI/3.1.4-gcccuda-2018b
+    module load PythonAnaconda/3.6
+    module load cuDNN/7.1.4.18-fosscuda-2018b
+    module load CMake/3.11.4-GCCcore-7.3.0
+    
+    conda create --prefix=<location_for_your_environment> python=3.6 anaconda                 #create virtual environment
+    
+    conda activate  <location_for_your_environment>                                           #activate virtual environment
+
+Install Pytorch (not recommended)
+
+    cd /tmp
+    git clone https://github.com/pytorch/pytorch                                  #clone Pytorch from the source
+    cd pytorch                                                                    #go to folder
+    git checkout v1.7.1                                                           #Checkout version (example: 1.7.1)
+    git submodule update --init                                                   #Update dependencies
+    python setup.py install                                                       #install it with python
 
 ##### Install Horovod for Pytorch with python and pip
 
@@ -260,10 +265,10 @@ details.
 
 ##### Verify that Horovod works
 
-    python                                                                             #start python
-    import torch                                                                       #import pytorch
-    import horovod.torch as hvd                                                        #import horovod
-    hvd.init()                                                                         #initialize horovod
+    python                                           #start python
+    import torch                                     #import pytorch
+    import horovod.torch as hvd                      #import horovod
+    hvd.init()                                       #initialize horovod
     hvd.size()
     hvd.rank()
     print('Hello from:', hvd.rank())
@@ -273,7 +278,5 @@ details.
 If you want to use NCCL instead of MPI you can specify that in the
 install command after loading the NCCL module:
 
-    module load NCCL/2.3.7-fosscuda-2018b<br />HOROVOD_GPU_ALLREDUCE=NCCL HOROVOD_GPU_BROADCAST=NCCL HOROVOD_WITHOUT_TENSORFLOW=1 HOROVOD_WITH_PYTORCH=1 HOROVOD_WITHOUT_MXNET=1 pip install --no-cache-dir horovod
-
-\<div id="gtx-trans" style="position: absolute; left: 386px; top:
-2567.99px;"> \</div>
+    module load NCCL/2.3.7-fosscuda-2018b
+    HOROVOD_GPU_ALLREDUCE=NCCL HOROVOD_GPU_BROADCAST=NCCL HOROVOD_WITHOUT_TENSORFLOW=1 HOROVOD_WITH_PYTORCH=1 HOROVOD_WITHOUT_MXNET=1 pip install --no-cache-dir horovod
-- 
GitLab