diff --git a/doc.zih.tu-dresden.de/docs/software/data_analytics_with_r.md b/doc.zih.tu-dresden.de/docs/software/data_analytics_with_r.md index b9a665b133e6ece35f4b26dad37516f20e15e6d7..afead82a8abfb5ca3826a0110940ea5574a8c1dd 100644 --- a/doc.zih.tu-dresden.de/docs/software/data_analytics_with_r.md +++ b/doc.zih.tu-dresden.de/docs/software/data_analytics_with_r.md @@ -63,7 +63,8 @@ marie@compute$ R -e 'install.packages("ggplot2")' ## Deep Learning with R The deep learning frameworks perform extremely fast when run on accelerators such as GPU. -Therefore, using nodes with built-in GPUs, e.g., partitions [ml](../jobs_and_resources/power9.md) +Therefore, using nodes with built-in GPUs, e.g., partitions +[ml](../jobs_and_resources/hardware_overview.md) and [alpha](../jobs_and_resources/alpha_centauri.md), is beneficial for the examples here. ### R Interface to TensorFlow diff --git a/doc.zih.tu-dresden.de/docs/software/machine_learning.md b/doc.zih.tu-dresden.de/docs/software/machine_learning.md index f2e5f24aa9f4f8e5f8fb516310b842584d30a614..1f40e6199e88f6aa4fd68037a0f4b32113001913 100644 --- a/doc.zih.tu-dresden.de/docs/software/machine_learning.md +++ b/doc.zih.tu-dresden.de/docs/software/machine_learning.md @@ -13,7 +13,7 @@ The main feature of the nodes is the ability to work with the [NVIDIA Tesla V100](https://www.nvidia.com/en-gb/data-center/tesla-v100/) GPU with **NV-Link** support that allows a total bandwidth with up to 300 GB/s. Each node on the partition ML has 6x Tesla V-100 GPUs. You can find a detailed specification of the partition in our -[Power9 documentation](../jobs_and_resources/power9.md). +[Power9 documentation](../jobs_and_resources/hardware_overview.md). !!! note