diff --git a/doc.zih.tu-dresden.de/docs/software/misc/tensorflow_jupyter_module.png b/doc.zih.tu-dresden.de/docs/software/misc/tensorflow_jupyter_module.png
index dc6fa60eebfacfb66a6735e826e2a5ed1cf60e42..1327ee6304faf4b293c385981a750f362063ecbf 100644
Binary files a/doc.zih.tu-dresden.de/docs/software/misc/tensorflow_jupyter_module.png and b/doc.zih.tu-dresden.de/docs/software/misc/tensorflow_jupyter_module.png differ
diff --git a/doc.zih.tu-dresden.de/docs/software/tensorflow.md b/doc.zih.tu-dresden.de/docs/software/tensorflow.md
index 0d5ef7503d3283376d0eaeb400fde1529fa95f08..d9b488007026fc6450c42220caa477006e1670e1 100644
--- a/doc.zih.tu-dresden.de/docs/software/tensorflow.md
+++ b/doc.zih.tu-dresden.de/docs/software/tensorflow.md
@@ -1,111 +1,108 @@
 # TensorFlow
 
-## Introduction
+TensorFlow is a free end-to-end open-source software library for dataflow and differentiable
+programming across many tasks. It is a symbolic math library, used primarily for machine learning
+applications. It has a comprehensive, flexible ecosystem of tools, libraries and community
+resources.
 
-This is an introduction of how to start working with TensorFlow and run
-machine learning applications on the [HPC-DA](../jobs_and_resources/hpcda.md) system of Taurus.
-
-\<span style="font-size: 1em;">On the machine learning nodes (machine
-learning partition), you can use the tools from [IBM PowerAI](power_ai.md) or the other
-modules. PowerAI is an enterprise software distribution that combines popular open-source
-deep learning frameworks, efficient AI development tools (Tensorflow, Caffe, etc). For
-this page and examples was used [PowerAI version 1.5.4](https://www.ibm.com/support/knowledgecenter/en/SS5SF7_1.5.4/navigation/pai_software_pkgs.html)
+Please check the software modules list via
 
-[TensorFlow](https://www.tensorflow.org/guide/) is a free end-to-end open-source
-software library for dataflow and differentiable programming across many
-tasks. It is a symbolic math library, used primarily for machine
-learning applications. It has a comprehensive, flexible ecosystem of tools, libraries and
-community resources. It is available on taurus along with other common machine
-learning packages like Pillow, SciPY, Numpy.
+    module spider TensorFlow
+
+to find out, which TensorFlow modules are available on your partition.
+
+On ZIH systems, TensorFlow 2 is the default module version. For compatibility hints between TF2 and
+TF1, see the corresponding [section](#compatibility-tf2-and-tf1) below.
 
-**Prerequisites:** To work with Tensorflow on Taurus, you obviously need
-[access](../access/ssh_login.md) for the Taurus system and basic knowledge about Python, SLURM system.
+We recommend using **Alpha** and/or **ML** partitions when working with machine learning workflows
+and the TensorFlow library. You can find detailed hardware specification
+[here](../jobs_and_resources/hardware_taurus.md).
 
-**Aim** of this page is to introduce users on how to start working with
-TensorFlow on the \<a href="HPCDA" target="\_self">HPC-DA\</a> system -
-part of the TU Dresden HPC system.
+## TensorFlow Console
 
-There are three main options on how to work with Tensorflow on the
-HPC-DA: **1.** **Modules,** **2.** **JupyterNotebook, 3. Containers**. The best option is
-to use [module system](../software/runtime_environment.md#Module_Environments) and
-Python virtual environment. Please see the next chapters and the [Python page](python.md) for the
-HPC-DA system.
+On the **Alpha** partition load the module environment:
 
-The information about the Jupyter notebook and the **JupyterHub** could
-be found [here](../access/jupyterhub.md). The use of
-Containers is described [here](tensorflow_container_on_hpcda.md).
+```Bash
+tauruslogin:~> srun -p alpha --gres=gpu:1 -n 1 -c 7 --pty --mem-per-cpu=8000 bash   #Job submission on alpha nodes with 1 gpu on 1 node with 8000 mb.
+taurus-rome:~> module load modenv/scs5
+```
 
-On Taurus, there exist different module environments, each containing a set
-of software modules. The default is *modenv/scs5* which is already loaded,
-however for the HPC-DA system using the "ml" partition you need to use *modenv/ml*.
-To find out which partition are you using use: `ml list`.
-You can change the module environment with the command:
+On the **ML** partition load the module environment:
 
-    module load modenv/ml
+```Bash
+tauruslogin:~> srun -p ml --gres=gpu:1 -n 1 -c 7 --pty --mem-per-cpu=8000 bash    #Job submission in ml nodes with 1 gpu on 1 node with 8000 mb.
+taurus-ml:~> module load modenv/ml    #example output: The following have been reloaded with a version change:  1) modenv/scs5 => modenv/ml
+```
 
-The machine learning partition is based on the PowerPC Architecture (ppc64le)
-(Power9 processors), which means that the software built for x86_64 will not
-work on this partition, so you most likely can't use your already locally
-installed packages on Taurus. Also, users need to use the modules which are
-specially made for the ml partition (from modenv/ml) and not for the rest
-of Taurus (e.g. from modenv/scs5).
+This example shows how to install and start working with TensorFlow (with using modules system)
 
-Each node on the ml partition has 6x Tesla V-100 GPUs, with 176 parallel threads
-on 44 cores per node (Simultaneous multithreading (SMT) enabled) and 256GB RAM.
-The specification could be found [here](../jobs_and_resources/power9.md).
+```Bash
+taurus-ml:~> module load TensorFlow    #load TensorFlow module. example output: Module TensorFlow/1.10.0-PythonAnaconda-3.6 and 1 dependency loaded.
+```
 
-%RED%Note:<span class="twiki-macro ENDCOLOR"></span> Users should not
-reserve more than 28 threads per each GPU device so that other users on
-the same node still have enough CPUs for their computations left.
+Now we check that we can access TensorFlow. One example is tensorflow-test:
 
-## Get started with Tensorflow
+```Bash
+taurus-ml:~> tensorflow-test    #example output: Basic test of tensorflow - A Hello World!!!...
+```
 
-This example shows how to install and start working with TensorFlow
-(with using modules system) and the python virtual environment. Please,
-check the next chapter for the details about the virtual environment.
+As another example we use a python virtual environment and import TensorFlow.
 
-    srun -p ml --gres=gpu:1 -n 1 -c 7 --pty --mem-per-cpu=8000 bash   #Job submission in ml nodes with 1 gpu on 1 node with 8000 mb.
+```Bash
+taurus-ml:~> mkdir python-environments    #create folder 
+taurus-ml:~> which python    #check which python are you using
+taurus-ml:~> virtualenvv --system-site-packages python-environments/env    #create virtual environment "env" which inheriting with global site packages
+taurus-ml:~> source python-environments/env/bin/activate    #activate virtual environment "env". Example output: (env) bash-4.2$
+taurus-ml:~> python    #start python
+>>> import tensorflow as tf
+>>> print(tf.VERSION)    #example output: 1.10.0
+```
 
-    module load modenv/ml                    #example output: The following have been reloaded with a version change:  1) modenv/scs5 => modenv/ml
+## TensorFlow in JupyterHub
 
-    mkdir python-environments                #create folder
-    module load TensorFlow                   #load TensorFlow module. Example output: Module TensorFlow/1.10.0-PythonAnaconda-3.6 and 1 dependency loaded.
-    which python                             #check which python are you using
-    virtualenvv --system-site-packages python-environments/env   #create virtual environment "env" which inheriting with global site packages
-    source python-environments/env/bin/activate                  #Activate virtual environment "env". Example output: (env) bash-4.2$
-    python                                                       #start python
-    import tensorflow as tf
-    print(tf.VERSION)                                            #example output: 1.10.0
+In addition to using interactive and batch jobs, it is possible to work with TensorFlow using
+JupyterHub. The production and test environments of JupyterHub contain Python and R kernels, that
+both come with a TensorFlow support.
 
-On the machine learning nodes, you can use the tools from [IBM Power
-AI](power_ai.md).
+![TensorFlow module in JupyterHub](misc/tensorflow_jupyter_module.png)
+{: align="center"}
 
-## Interactive Session Examples
+## TensorFlow in Containers
 
-### Tensorflow-Test
+Another option to use TensorFlow are containers. In the HPC domain, the
+[Singularity](https://singularity.hpcng.org/) container system is a widely used tool. In the
+following example, we use the tensorflow-test in a Singularity container:
 
-    tauruslogin6 :~> srun -p ml --gres=gpu:1 -n 1 --pty --mem-per-cpu=10000 bash
-    srun: job 4374195 queued and waiting for resources
-    srun: job 4374195 has been allocated resources
-    taurusml22 :~> ANACONDA2_INSTALL_PATH='/opt/anaconda2'
-    taurusml22 :~> ANACONDA3_INSTALL_PATH='/opt/anaconda3'
-    taurusml22 :~> export PATH=$ANACONDA3_INSTALL_PATH/bin:$PATH
-    taurusml22 :~> source /opt/DL/tensorflow/bin/tensorflow-activate
-    taurusml22 :~> tensorflow-test
-    Basic test of tensorflow - A Hello World!!!...
+```Bash
+tauruslogin:~> srun -p ml --gres=gpu:1 -n 1 -c 7 --pty --mem-per-cpu=8000 bash    #Job submission in ml nodes with 1 gpu on 1 node with 8000 mb.
+taurus-ml:~> singularity shell --nv /scratch/singularity/powerai-1.5.3-all-ubuntu16.04-py3.img
+taurus-ml:~> export PATH=/opt/anaconda3/bin:$PATH                                               
+taurus-ml:~> source activate /opt/anaconda3    #activate conda environment
+taurus-ml:~> . /opt/DL/tensorflow/bin/tensorflow-activate
+taurus-ml:~> tensorflow-test    #example output: Basic test of tensorflow - A Hello World!!!...
+```
 
-    #or:
-    taurusml22 :~> module load TensorFlow/1.10.0-PythonAnaconda-3.6
+## TensorFlow with Python or R
 
-Or to use the whole node: `--gres=gpu:6 --exclusive --pty`
+For further information on TensorFlow in combination with Python see
+[here](data_analytics_with_python.md), for R see [here](data_analytics_with_r.md).
 
-### In Singularity container:
+## Compatibility TF2 and TF1
 
-    rotscher@tauruslogin6:~&gt; srun -p ml --gres=gpu:6 --pty bash
-    [rotscher@taurusml22 ~]$ singularity shell --nv /scratch/singularity/powerai-1.5.3-all-ubuntu16.04-py3.img
-    Singularity powerai-1.5.3-all-ubuntu16.04-py3.img:~&gt; export PATH=/opt/anaconda3/bin:$PATH
-    Singularity powerai-1.5.3-all-ubuntu16.04-py3.img:~&gt; . /opt/DL/tensorflow/bin/tensorflow-activate
-    Singularity powerai-1.5.3-all-ubuntu16.04-py3.img:~&gt; tensorflow-test
+TensorFlow 2.0 includes many API changes, such as reordering arguments, renaming symbols, and
+changing default values for parameters. Thus in some cases, it makes code written for the TensorFlow
+1 not compatible with TensorFlow 2. However, If you are using the high-level APIs (tf.keras) there
+may be little or no action you need to take to make your code fully [TensorFlow
+2.0](https://www.tensorflow.org/guide/migrate) compatible. It is still possible to run 1.X code,
+unmodified (except for contrib), in TensorFlow 2.0:
+
+```Python
+import tensorflow.compat.v1 as tf
+tf.disable_v2_behavior()    #instead of "import tensorflow as tf"
+```
+
+To make the transition to TF 2.0 as seamless as possible, the TensorFlow team has created the
+tf_upgrade_v2 utility to help transition legacy code to the new API.
 
 ## Additional libraries
 
@@ -120,70 +117,6 @@ Note: For optimal NCCL performance it is recommended to set the
 **NCCL_MIN_NRINGS** environment variable during execution. You can try
 different values but 4 should be a pretty good starting point.
 
-    export NCCL_MIN_NRINGS=4
-
-\<span style="color: #222222; font-size: 1.385em;">HPC\</span>
-
-The following HPC related software is installed on all nodes:
-
-|                  |                        |
-|------------------|------------------------|
-| IBM Spectrum MPI | /opt/ibm/spectrum_mpi/ |
-| PGI compiler     | /opt/pgi/              |
-| IBM XLC Compiler | /opt/ibm/xlC/          |
-| IBM XLF Compiler | /opt/ibm/xlf/          |
-| IBM ESSL         | /opt/ibmmath/essl/     |
-| IBM PESSL        | /opt/ibmmath/pessl/    |
-
-## TensorFlow 2
-
-[TensorFlow
-2.0](https://blog.tensorflow.org/2019/09/tensorflow-20-is-now-available.html)
-is a significant milestone for TensorFlow and the community. There are
-multiple important changes for users. TensorFlow 2.0 removes redundant
-APIs, makes APIs more consistent (Unified RNNs, Unified Optimizers), and
-better integrates with the Python runtime with Eager execution. Also,
-TensorFlow 2.0 offers many performance improvements on GPUs.
-
-There are a number of TensorFlow 2 modules for both ml and scs5 modenvs
-on Taurus. Please check\<a href="SoftwareModulesList" target="\_blank">
-the software modules list\</a> for the information about available
-modules or use
-
-    module spider TensorFlow
-
-%RED%Note:<span class="twiki-macro ENDCOLOR"></span> Tensorflow 2 will
-be loaded by default when loading the Tensorflow module without
-specifying the version.
-
-\<span style="font-size: 1em;">TensorFlow 2.0 includes many API changes,
-such as reordering arguments, renaming symbols, and changing default
-values for parameters. Thus in some cases, it makes code written for the
-TensorFlow 1 not compatible with TensorFlow 2. However, If you are using
-the high-level APIs (tf.keras) there may be little or no action you need
-to take to make your code fully TensorFlow 2.0 \<a
-href="<https://www.tensorflow.org/guide/migrate>"
-target="\_blank">compatible\</a>. It is still possible to run 1.X code,
-unmodified ( [except for
-contrib](https://github.com/tensorflow/community/blob/master/rfcs/20180907-contrib-sunset.md)),
-in TensorFlow 2.0:\</span>
-
-    import tensorflow.compat.v1 as tf
-    tf.disable_v2_behavior()                                  #instead of "import tensorflow as tf"
-
-To make the transition to TF 2.0 as seamless as possible, the TensorFlow
-team has created the
-[`tf_upgrade_v2`](https://www.tensorflow.org/guide/upgrade) utility to
-help transition legacy code to the new API.
-
-## FAQ:
-
-Q: Which module environment should I use? modenv/ml, modenv/scs5,
-modenv/hiera
-
-A: On the ml partition use modenv/ml, on rome and gpu3 use modenv/hiera,
-else stay with the default of modenv/scs5.
-
-Q: How to change the module environment and know more about modules?
-
-A: [Modules](../software/runtime_environment.md#Modules)
+```Bash
+export NCCL_MIN_NRINGS=4
+```
diff --git a/doc.zih.tu-dresden.de/docs/software/tensorflow_new.md b/doc.zih.tu-dresden.de/docs/software/tensorflow_new.md
deleted file mode 100644
index 3d623f1461c1f55cab180a1836338fe487aa6128..0000000000000000000000000000000000000000
--- a/doc.zih.tu-dresden.de/docs/software/tensorflow_new.md
+++ /dev/null
@@ -1,91 +0,0 @@
-# Tensorflow
-
-TensorFlow is a free end-to-end open-source software library for dataflow and differentiable programming across many tasks. It is a symbolic math library, used primarily for machine learning applications. It has a comprehensive, flexible ecosystem of tools, libraries and community resources.
-
-On taurus, Tensorflow 2 is the default module version. Please check \<a href="SoftwareModulesList" target="\_blank">
-the software modules list\</a> for information about available modules or use
-
-    module spider TensorFlow
-
-For compatibility hints between TF2 and TF1, see here.
-
-We recommend using **Alpha** and/or **ML** partitions when working with machine learning workflows and the Tensorflow library. For more details see here. You can find detailed hardware specification here.
-
-## Tensorflow Console
-
-On the **ML** partition load the module environment:
-    
-    module load modenv/ml
-
-On the **Alpha** partition load the module environment:
-    
-    module load modenv/scs5
-
-This example shows how to install and start working with TensorFlow (with using modules system)
-
-    srun -p ml --gres=gpu:1 -n 1 -c 7 --pty --mem-per-cpu=8000 bash   #Job submission in ml nodes with 1 gpu on 1 node with 8000 mb.
-    module load modenv/ml                    #example output: The following have been reloaded with a version change:  1) modenv/scs5 => modenv/ml
-    module load TensorFlow                   #load TensorFlow module. Example output: Module TensorFlow/1.10.0-PythonAnaconda-3.6 and 1 dependency loaded.
-
-Now we check that we can access Tensorflow. One example is tensorflow-test:
-    
-    tauruslogin6 :~> srun -p ml --gres=gpu:1 -n 1 --pty --mem-per-cpu=10000 bash
-    srun: job 4374195 queued and waiting for resources
-    srun: job 4374195 has been allocated resources
-    taurusml22 :~> module load TensorFlow/1.10.0-PythonAnaconda-3.6
-    taurusml22 :~> tensorflow-test
-    Basic test of tensorflow - A Hello World!!!...
-
-As another example we use a python virtual environment and import Tensorflow.
-
-    mkdir python-environments                #create folder 
-    which python                #check which python are you using
-    virtualenvv --system-site-packages python-environments/env   #create virtual environment "env" which inheriting with global site packages
-    source python-environments/env/bin/activate                  #Activate virtual environment "env". Example output: (env) bash-4.2$
-    python                                                       #start python
-    import tensorflow as tf
-    print(tf.VERSION)                                            #example output: 1.10.0
-
-## Tensorflow in JupyterHub
-In addition to using interactive and batch jobs, it is possible to work with Tensorflow using JupyterHub. The production and test environments of JupyterHub contain Python and R kernels, that both come with a Tensorflow support.
-
-![Tensorflow module in JupyterHub](misc/tensorflow_jupyter_module.png)
-{: align="center"}
-
-## Tensorflow in Containers
-Another option to use Tensorflow are containers. In the HPC domain, the [Singularity](https://singularity.hpcng.org/) container system is a widely used tool. In the following example, we use the tesnroflow-test in a Singularity container:
-
-    rotscher@tauruslogin6:~&gt; srun -p ml --gres=gpu:1 -n 1 -c 7 --pty --mem-per-cpu=8000 bash
-    [rotscher@taurusml22 ~]$ singularity shell --nv /scratch/singularity/powerai-1.5.3-all-ubuntu16.04-py3.img
-    Singularity powerai-1.5.3-all-ubuntu16.04-py3.img:~&gt; export PATH=/opt/anaconda3/bin:$PATH
-    Singularity powerai-1.5.3-all-ubuntu16.04-py3.img:~&gt; . /opt/DL/tensorflow/bin/tensorflow-activate
-    Singularity powerai-1.5.3-all-ubuntu16.04-py3.img:~&gt; tensorflow-test
-
-
-## Tensorflow with Python or R
-For further information on Tensorflow in combination with Python see [here](data_analytics_with_python.md), for R see [here](data_analytics_with_r.md).
-
-## Compatibility TF2 and TF1
-TensorFlow 2.0 includes many API changes, such as reordering arguments, renaming symbols, and changing default values for parameters. Thus in some cases, it makes code written for the TensorFlow 1 not compatible with TensorFlow 2. However, If you are using the high-level APIs (tf.keras) there may be little or no action you need to take to make your code fully [TensorFlow 2.0](https://www.tensorflow.org/guide/migrate) compatible. It is still possible to run 1.X code, unmodified (except for contrib), in TensorFlow 2.0:
-    
-    import tensorflow.compat.v1 as tf
-    tf.disable_v2_behavior()                                  #instead of "import tensorflow as tf"
-
-To make the transition to TF 2.0 as seamless as possible, the TensorFlow team has created the tf_upgrade_v2 utility to help transition legacy code to the new API.
-
-
-## Additional libraires
-
-The following NVIDIA libraries are available on all nodes:
-
-|       |                                       |
-|-------|---------------------------------------|
-| NCCL  | /usr/local/cuda/targets/ppc64le-linux |
-| cuDNN | /usr/local/cuda/targets/ppc64le-linux |
-
-Note: For optimal NCCL performance it is recommended to set the
-**NCCL_MIN_NRINGS** environment variable during execution. You can try
-different values but 4 should be a pretty good starting point.
-
-    export NCCL_MIN_NRINGS=4
-