From 9c984a44ec7ae8a9898534b2ca5bedcd62539141 Mon Sep 17 00:00:00 2001 From: Martin Schroschk <martin.schroschk@tu-dresden.de> Date: Thu, 7 Nov 2024 10:39:29 +0100 Subject: [PATCH] Fix link to alpha centauri section --- doc.zih.tu-dresden.de/docs/software/data_analytics_with_r.md | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/doc.zih.tu-dresden.de/docs/software/data_analytics_with_r.md b/doc.zih.tu-dresden.de/docs/software/data_analytics_with_r.md index bcebd84b4..a36384bf3 100644 --- a/doc.zih.tu-dresden.de/docs/software/data_analytics_with_r.md +++ b/doc.zih.tu-dresden.de/docs/software/data_analytics_with_r.md @@ -63,7 +63,7 @@ marie@compute$ R -e 'install.packages("ggplot2")' The deep learning frameworks perform extremely fast when run on accelerators such as GPU. Therefore, using nodes with built-in GPUs, e.g., clusters [`Capella`](../jobs_and_resources/hardware_overview.md#capella), -[`Alpha`](../jobs_and_resources/hardware_overview.md#alpha_centauri) and +[`Alpha`](../jobs_and_resources/hardware_overview.md#alpha-centauri) and [`Power9`](../jobs_and_resources/hardware_overview.md) is beneficial for the examples here. ### R Interface to TensorFlow -- GitLab