diff --git a/doc.zih.tu-dresden.de/docs/software/data_analytics_with_r.md b/doc.zih.tu-dresden.de/docs/software/data_analytics_with_r.md index bcebd84b419ba40547abc10ae76c15cf76383cfd..a36384bf3c831bffa89aef83ec1b09cba5beaf8d 100644 --- a/doc.zih.tu-dresden.de/docs/software/data_analytics_with_r.md +++ b/doc.zih.tu-dresden.de/docs/software/data_analytics_with_r.md @@ -63,7 +63,7 @@ marie@compute$ R -e 'install.packages("ggplot2")' The deep learning frameworks perform extremely fast when run on accelerators such as GPU. Therefore, using nodes with built-in GPUs, e.g., clusters [`Capella`](../jobs_and_resources/hardware_overview.md#capella), -[`Alpha`](../jobs_and_resources/hardware_overview.md#alpha_centauri) and +[`Alpha`](../jobs_and_resources/hardware_overview.md#alpha-centauri) and [`Power9`](../jobs_and_resources/hardware_overview.md) is beneficial for the examples here. ### R Interface to TensorFlow