diff --git a/doc.zih.tu-dresden.de/docs/modules/.gitkeep b/doc.zih.tu-dresden.de/docs/modules/.gitkeep
deleted file mode 100644
index e69de29bb2d1d6434b8b29ae775ad8c2e48c5391..0000000000000000000000000000000000000000
diff --git a/doc.zih.tu-dresden.de/docs/software/Cloud.md b/doc.zih.tu-dresden.de/docs/software/Cloud.md
index 9d9e550808df2e0c18f22bea3ff5bb3838bc4180..3819bdc56ceab064bfe46a722b3e1168324e6659 100644
--- a/doc.zih.tu-dresden.de/docs/software/Cloud.md
+++ b/doc.zih.tu-dresden.de/docs/software/Cloud.md
@@ -1,7 +1,7 @@
 # Virtual machine on Taurus
 
 The following instructions are primarily aimed at users who want to build their
-[Singularity](containers.md) containers on Taurus.
+[Singularity](Containers.md) containers on Taurus.
 
 The Singularity container setup requires a Linux machine with root privileges, the same architecture
 and a compatible kernel. If some of these requirements can not be fulfilled, then there is
diff --git a/doc.zih.tu-dresden.de/docs/software/containers.md b/doc.zih.tu-dresden.de/docs/software/Containers.md
similarity index 100%
rename from doc.zih.tu-dresden.de/docs/software/containers.md
rename to doc.zih.tu-dresden.de/docs/software/Containers.md
diff --git a/doc.zih.tu-dresden.de/docs/software/DeepLearning.md b/doc.zih.tu-dresden.de/docs/software/DeepLearning.md
index e9f5854c43c32d6e6cfcf303edd999cc9b2dd17f..5eee674f447668a9d1f7f4119505af3941a2beb0 100644
--- a/doc.zih.tu-dresden.de/docs/software/DeepLearning.md
+++ b/doc.zih.tu-dresden.de/docs/software/DeepLearning.md
@@ -14,7 +14,7 @@ both the ml environment and the scs5 environment of the Taurus system.
 for dataflow and differentiable programming across a range of tasks.
 
 TensorFlow is available in both main partitions
-[ml environment and scs5 environment](modules.md#module-environments)
+[ml environment and scs5 environment](Modules.md#module-environments)
 under the module name "TensorFlow". However, for purposes of machine learning and deep learning, we
 recommend using Ml partition [HPC-DA](../jobs/HPCDA.md). For example:
 
@@ -24,7 +24,7 @@ module load TensorFlow
 
 There are numerous different possibilities on how to work with [TensorFlow](TensorFlow.md) on
 Taurus. On this page, for all examples default, scs5 partition is used. Generally, the easiest way
-is using the [modules system](modules.md)
+is using the [modules system](Modules.md)
 and Python virtual environment (test case). However, in some cases, you may need directly installed
 Tensorflow stable or night releases. For this purpose use the
 [EasyBuild](CustomEasyBuildEnvironment.md), [Containers](TensorFlowContainerOnHPCDA.md) and see
@@ -38,12 +38,12 @@ versions.
 
 [Keras](https://keras.io/) is a high-level neural network API, written in Python and capable of
 running on top of [TensorFlow](https://github.com/tensorflow/tensorflow) Keras is available in both
-environments [ml environment and scs5 environment](modules.md#module-environments) under the module
+environments [ml environment and scs5 environment](Modules.md#module-environments) under the module
 name "Keras".
 
 On this page for all examples default scs5 partition used. There are numerous different
 possibilities on how to work with [TensorFlow](TensorFlow.md) and Keras
-on Taurus. Generally, the easiest way is using the [module system](modules.md) and Python
+on Taurus. Generally, the easiest way is using the [module system](Modules.md) and Python
 virtual environment (test case) to see Tensorflow part above.
 For examples of using Keras for ml partition with the module system see the 
 [Keras page for HPC-DA](Keras.md).
diff --git a/doc.zih.tu-dresden.de/docs/software/GetStartedWithHPCDA.md b/doc.zih.tu-dresden.de/docs/software/GetStartedWithHPCDA.md
index 4ac517d046a85700a5ce232da711f30f7b9402b5..1c14c5d346050d50992270cecbe7eb3ea9dab582 100644
--- a/doc.zih.tu-dresden.de/docs/software/GetStartedWithHPCDA.md
+++ b/doc.zih.tu-dresden.de/docs/software/GetStartedWithHPCDA.md
@@ -198,7 +198,7 @@ There are three main options on how to work with Tensorflow and PyTorch:
 
 ### Modules
 
-The easiest way is using the [modules system](modules.md) and Python virtual environment. Modules
+The easiest way is using the [modules system](Modules.md) and Python virtual environment. Modules
 are a way to use frameworks, compilers, loader, libraries, and utilities. The module is a user
 interface that provides utilities for the dynamic modification of a user's environment without
 manual modifications. You could use them for srun , bath jobs (sbatch) and the Jupyterhub.
@@ -327,7 +327,7 @@ page of the container.
 
 To use not a pure Tensorflow, PyTorch but also with some Python packages
 you have to use the definition file to create the container
-(bootstrapping). For details please see the [Container](containers.md) page
+(bootstrapping). For details please see the [Container](Containers.md) page
 from our wiki. Bootstrapping **has required root privileges** and
 Virtual Machine (VM) should be used! There are two main options on how
 to work with VM on Taurus: [VM tools](VMTools.md) - automotive algorithms
diff --git a/doc.zih.tu-dresden.de/docs/software/modules.md b/doc.zih.tu-dresden.de/docs/software/Modules.md
similarity index 100%
rename from doc.zih.tu-dresden.de/docs/software/modules.md
rename to doc.zih.tu-dresden.de/docs/software/Modules.md
diff --git a/doc.zih.tu-dresden.de/docs/software/overview.md b/doc.zih.tu-dresden.de/docs/software/Overview.md
similarity index 96%
rename from doc.zih.tu-dresden.de/docs/software/overview.md
rename to doc.zih.tu-dresden.de/docs/software/Overview.md
index dbb75ca856f493db73454fb45bbedc4955c6d7be..f856f706e2126c5cbf40939020dece5967e00212 100644
--- a/doc.zih.tu-dresden.de/docs/software/overview.md
+++ b/doc.zih.tu-dresden.de/docs/software/Overview.md
@@ -14,7 +14,7 @@ There are a lot of different possibilities to work with software on Taurus:
 ## Modules
 
 Usage of software on HPC systems is managed by a **modules system**. Thus, it is crucial to
-be familiar with the [modules concept and commands](modules.md).  Modules are a way to use
+be familiar with the [modules concept and commands](Modules.md).  Modules are a way to use
 frameworks, compilers, loader, libraries, and utilities. A module is a user interface that provides
 utilities for the dynamic modification of a user's environment without manual modifications. You
 could use them for `srun`, batch jobs (`sbatch`) and the Jupyterhub.
diff --git a/doc.zih.tu-dresden.de/docs/software/pika.md b/doc.zih.tu-dresden.de/docs/software/PIKA.md
similarity index 100%
rename from doc.zih.tu-dresden.de/docs/software/pika.md
rename to doc.zih.tu-dresden.de/docs/software/PIKA.md
diff --git a/doc.zih.tu-dresden.de/docs/software/PyTorch.md b/doc.zih.tu-dresden.de/docs/software/PyTorch.md
index e73b224881fae055861c8d52c50eb61760ea2d6b..90018e4efd20fef71e7637c516d713fe2b69a608 100644
--- a/doc.zih.tu-dresden.de/docs/software/PyTorch.md
+++ b/doc.zih.tu-dresden.de/docs/software/PyTorch.md
@@ -24,8 +24,8 @@ and users who are just starting their work with Taurus.
 2\. The second way is using the Modules system and Python or conda virtual environment. 
 See [the Python page](Python.md) for the HPC-DA system.
 
-Note: The information on working with the PyTorch using Containers could
-be found [here](containers.md).
+Note: The information on working with the PyTorch using Containers could be found
+[here](Containers.md).
 
 ## Get started with PyTorch
 
diff --git a/doc.zih.tu-dresden.de/docs/software/Python.md b/doc.zih.tu-dresden.de/docs/software/Python.md
index d345e749df59efa54833908a621c98cfbc0472f7..92d7070a7e5d42ed74e0613ec2dabba9321085c7 100644
--- a/doc.zih.tu-dresden.de/docs/software/Python.md
+++ b/doc.zih.tu-dresden.de/docs/software/Python.md
@@ -14,8 +14,8 @@ Taurus system and basic knowledge about Python, Numpy and SLURM system.
 
 There are three main options on how to
 work with Keras and Tensorflow on the HPC-DA: 1. Modules; 2. [JupyterNotebook](JupyterHub.md); 
-3.[Containers](containers.md). The main way is using the [Modules
-system](modules.md) and Python virtual environment.
+3.[Containers](Containers.md). The main way is using the
+[Modules system](Modules.md) and Python virtual environment.
 
 Note: You could work with simple examples in your home directory but according to 
 [HPCStorageConcept2019](../data_management/HPCStorageConcept2019.md) please use **workspaces** 
@@ -170,20 +170,22 @@ module.
 Moreover, it is possible to install mpi4py in your local conda
 environment:
 
-    srun -p ml --time=04:00:00 -n 1 --pty --mem-per-cpu=8000 bash                            #allocate recources
-    module load modenv/ml
-    module load PythonAnaconda/3.6                                                           #load module to use conda
-    conda create --prefix=<location_for_your_environment> python=3.6 anaconda                #create conda virtual environment
+```Bash
+srun -p ml --time=04:00:00 -n 1 --pty --mem-per-cpu=8000 bash                            #allocate recources
+module load modenv/ml
+module load PythonAnaconda/3.6                                                           #load module to use conda
+conda create --prefix=<location_for_your_environment> python=3.6 anaconda                #create conda virtual environment
 
-    conda activate <location_for_your_environment>                                          #activate your virtual environment
+conda activate <location_for_your_environment>                                          #activate your virtual environment
 
-    conda install -c conda-forge mpi4py                                                      #install mpi4py
+conda install -c conda-forge mpi4py                                                      #install mpi4py
 
-    python                                                                                   #start python
+python                                                                                   #start python
 
-    from mpi4py import MPI                                                                   #verify your mpi4py
-    comm = MPI.COMM_WORLD
-    print("%d of %d" % (comm.Get_rank(), comm.Get_size()))
+from mpi4py import MPI                                                                   #verify your mpi4py
+comm = MPI.COMM_WORLD
+print("%d of %d" % (comm.Get_rank(), comm.Get_size()))
+```
 
 ### Horovod
 
@@ -203,13 +205,14 @@ in some cases better results than pure TensorFlow and PyTorch.
 
 #### Horovod as a module
 
-Horovod is available as a module with **TensorFlow** or **PyTorch**for
-**all** module environments. Please check the [software module
-list](modules.md) for the current version of the software.
+Horovod is available as a module with **TensorFlow** or **PyTorch**for **all** module environments.
+Please check the [software module list](Modules.md) for the current version of the software.
 Horovod can be loaded like other software on the Taurus:
 
-    ml av Horovod            #Check available modules with Python
-    module load Horovod      #Loading of the module
+```Bash
+ml av Horovod            #Check available modules with Python
+module load Horovod      #Loading of the module
+```
 
 #### Horovod installation
 
@@ -224,36 +227,42 @@ for your study and work projects** (see the Storage concept).
 
 Setup:
 
-    srun -N 1 --ntasks-per-node=6 -p ml --time=08:00:00 --pty bash                    #allocate a Slurm job allocation, which is a set of resources (nodes)
-    module load modenv/ml                                                             #Load dependencies by using modules 
-    module load OpenMPI/3.1.4-gcccuda-2018b
-    module load Python/3.6.6-fosscuda-2018b
-    module load cuDNN/7.1.4.18-fosscuda-2018b
-    module load CMake/3.11.4-GCCcore-7.3.0
-    virtualenv --system-site-packages <location_for_your_environment>                 #create virtual environment
-    source <location_for_your_environment>/bin/activate                               #activate virtual environment
+```Bash
+srun -N 1 --ntasks-per-node=6 -p ml --time=08:00:00 --pty bash                    #allocate a Slurm job allocation, which is a set of resources (nodes)
+module load modenv/ml                                                             #Load dependencies by using modules 
+module load OpenMPI/3.1.4-gcccuda-2018b
+module load Python/3.6.6-fosscuda-2018b
+module load cuDNN/7.1.4.18-fosscuda-2018b
+module load CMake/3.11.4-GCCcore-7.3.0
+virtualenv --system-site-packages <location_for_your_environment>                 #create virtual environment
+source <location_for_your_environment>/bin/activate                               #activate virtual environment
+```
 
 Or when you need to use conda:
 
-    srun -N 1 --ntasks-per-node=6 -p ml --time=08:00:00 --pty bash                            #allocate a Slurm job allocation, which is a set of resources (nodes)
-    module load modenv/ml                                                                     #Load dependencies by using modules
-    module load OpenMPI/3.1.4-gcccuda-2018b
-    module load PythonAnaconda/3.6
-    module load cuDNN/7.1.4.18-fosscuda-2018b
-    module load CMake/3.11.4-GCCcore-7.3.0
-    
-    conda create --prefix=<location_for_your_environment> python=3.6 anaconda                 #create virtual environment
-    
-    conda activate  <location_for_your_environment>                                           #activate virtual environment
+```Bash
+srun -N 1 --ntasks-per-node=6 -p ml --time=08:00:00 --pty bash                            #allocate a Slurm job allocation, which is a set of resources (nodes)
+module load modenv/ml                                                                     #Load dependencies by using modules
+module load OpenMPI/3.1.4-gcccuda-2018b
+module load PythonAnaconda/3.6
+module load cuDNN/7.1.4.18-fosscuda-2018b
+module load CMake/3.11.4-GCCcore-7.3.0
+
+conda create --prefix=<location_for_your_environment> python=3.6 anaconda                 #create virtual environment
+
+conda activate  <location_for_your_environment>                                           #activate virtual environment
+```
 
 Install Pytorch (not recommended)
 
-    cd /tmp
-    git clone https://github.com/pytorch/pytorch                                  #clone Pytorch from the source
-    cd pytorch                                                                    #go to folder
-    git checkout v1.7.1                                                           #Checkout version (example: 1.7.1)
-    git submodule update --init                                                   #Update dependencies
-    python setup.py install                                                       #install it with python
+```Bash
+cd /tmp
+git clone https://github.com/pytorch/pytorch                                  #clone Pytorch from the source
+cd pytorch                                                                    #go to folder
+git checkout v1.7.1                                                           #Checkout version (example: 1.7.1)
+git submodule update --init                                                   #Update dependencies
+python setup.py install                                                       #install it with python
+```
 
 ##### Install Horovod for Pytorch with python and pip
 
@@ -261,22 +270,28 @@ In the example presented installation for the Pytorch without
 TensorFlow. Adapt as required and refer to the horovod documentation for
 details.
 
-    HOROVOD_GPU_ALLREDUCE=MPI HOROVOD_WITHOUT_TENSORFLOW=1 HOROVOD_WITH_PYTORCH=1 HOROVOD_WITHOUT_MXNET=1 pip install --no-cache-dir horovod                                                                           
+```Bash
+HOROVOD_GPU_ALLREDUCE=MPI HOROVOD_WITHOUT_TENSORFLOW=1 HOROVOD_WITH_PYTORCH=1 HOROVOD_WITHOUT_MXNET=1 pip install --no-cache-dir horovod 
+```
 
 ##### Verify that Horovod works
 
-    python                                           #start python
-    import torch                                     #import pytorch
-    import horovod.torch as hvd                      #import horovod
-    hvd.init()                                       #initialize horovod
-    hvd.size()
-    hvd.rank()
-    print('Hello from:', hvd.rank())
+```Bash
+python                                           #start python
+import torch                                     #import pytorch
+import horovod.torch as hvd                      #import horovod
+hvd.init()                                       #initialize horovod
+hvd.size()
+hvd.rank()
+print('Hello from:', hvd.rank())
+```
 
 ##### Horovod with NCCL
 
 If you want to use NCCL instead of MPI you can specify that in the
 install command after loading the NCCL module:
 
-    module load NCCL/2.3.7-fosscuda-2018b
-    HOROVOD_GPU_ALLREDUCE=NCCL HOROVOD_GPU_BROADCAST=NCCL HOROVOD_WITHOUT_TENSORFLOW=1 HOROVOD_WITH_PYTORCH=1 HOROVOD_WITHOUT_MXNET=1 pip install --no-cache-dir horovod
+```Bash
+module load NCCL/2.3.7-fosscuda-2018b
+HOROVOD_GPU_ALLREDUCE=NCCL HOROVOD_GPU_BROADCAST=NCCL HOROVOD_WITHOUT_TENSORFLOW=1 HOROVOD_WITH_PYTORCH=1 HOROVOD_WITHOUT_MXNET=1 pip install --no-cache-dir horovod
+```
diff --git a/doc.zih.tu-dresden.de/docs/software/VMTools.md b/doc.zih.tu-dresden.de/docs/software/VMTools.md
index 556270290641d83c618d29709cfc6b88d7c2c193..884926b697f0cf72920874047ef112c0373f4c80 100644
--- a/doc.zih.tu-dresden.de/docs/software/VMTools.md
+++ b/doc.zih.tu-dresden.de/docs/software/VMTools.md
@@ -1,7 +1,7 @@
 # Singularity on Power9 / ml partition
 
 Building Singularity containers from a recipe on Taurus is normally not possible due to the
-requirement of root (administrator) rights, see [Containers](containers.md). For obvious reasons
+requirement of root (administrator) rights, see [Containers](Containers.md). For obvious reasons
 users on Taurus cannot be granted root permissions.
 
 The solution is to build your container on your local Linux machine by executing something like
diff --git a/doc.zih.tu-dresden.de/docs/software/Visualization.md b/doc.zih.tu-dresden.de/docs/software/Visualization.md
index 2d7b0787d7e1652504c9d8f0d8baafa91f940b4d..79b3bdef27121a47cd6110277f8643aec0237d20 100644
--- a/doc.zih.tu-dresden.de/docs/software/Visualization.md
+++ b/doc.zih.tu-dresden.de/docs/software/Visualization.md
@@ -4,7 +4,7 @@
 
 [ParaView](https://paraview.org) is an open-source, multi-platform data
 analysis and visualization application. It is available on Taurus under
-the `ParaView` [modules](modules.md#modules-environment)
+the `ParaView` [modules](Modules.md#modules-environment)
 
 ```Bash
 taurus$ module avail ParaView
diff --git a/doc.zih.tu-dresden.de/docs/use_of_hardware/AlphaCentauri.md b/doc.zih.tu-dresden.de/docs/use_of_hardware/AlphaCentauri.md
index 6c13dcee7742a53f12ff0f09c1cfa5eb15a22666..e7a1368f44b5c6ee48f359548a7216ac9427dedb 100644
--- a/doc.zih.tu-dresden.de/docs/use_of_hardware/AlphaCentauri.md
+++ b/doc.zih.tu-dresden.de/docs/use_of_hardware/AlphaCentauri.md
@@ -29,11 +29,11 @@ cluster:
 1. **Modules**
 1  **Virtual Environments (manual software installation)**
 1. [JupyterHub](https://taurus.hrsk.tu-dresden.de/)
-1. [Containers](../software/containers.md)
+1. [Containers](../software/Containers.md)
 
 ### Modules
 
-The easiest way is using the [module system](../software/modules.md) and Python virtual environment.
+The easiest way is using the [module system](../software/Modules.md) and Python virtual environment.
 Modules are a way to use frameworks, compilers, loader, libraries, and utilities. The software
 environment for the **alpha** partition is available under the name **hiera**:
 
@@ -100,7 +100,7 @@ conda deactivate                            #Leave the virtual environment
 
 New software for data analytics is emerging faster than we can install it. If you urgently need a
 certain version we advise you to manually install it (the machine learning frameworks and required
-packages) in your virtual environment (or use a [container](../software/containers.md).
+packages) in your virtual environment (or use a [container](../software/Containers.md).
 
 The **Virtualenv** example:
 
@@ -183,7 +183,7 @@ parameter).
 On Taurus [Singularity](https://sylabs.io/) is used as a standard container
 solution. It can be run on the `alpha` partition as well. Singularity enables users to have full
 control of their environment. Detailed information about containers can be found
-[here](../software/containers.md).
+[here](../software/Containers.md).
 
 Nvidia
 [NGC](https://developer.nvidia.com/blog/how-to-run-ngc-deep-learning-containers-with-singularity/)
diff --git a/doc.zih.tu-dresden.de/mkdocs.yml b/doc.zih.tu-dresden.de/mkdocs.yml
index f94b619153bf0d925d1dea27b2afd3f10ccc0afa..21004dc1b0d13d306eff9651265f42eed7429303 100644
--- a/doc.zih.tu-dresden.de/mkdocs.yml
+++ b/doc.zih.tu-dresden.de/mkdocs.yml
@@ -13,17 +13,24 @@ nav:
     - Login: access/Login.md
     - Security Restrictions: access/SecurityRestrictions.md
     - SSH with Putty: access/SSHMitPutty.md
-  - Available Software and Usage:
-    - Overview: software/overview.md
-    - Modules: software/modules.md
-    - JupyterHub: software/JupyterHub.md
-    - JupyterHub for Teaching: software/JupyterHubForTeaching.md
+  - Environment and Software:
+    - Overview: software/Overview.md
+    - Environment:
+      - Modules: software/Modules.md
+      - Custom EasyBuild Modules: software/CustomEasyBuildEnvironment.md
+    - JupyterHub:
+      - Overview: software/JupyterHub.md
+      - JupyterHub for Teaching: software/JupyterHubForTeaching.md
     - Containers:
-      - Singularity: software/containers.md
+      - Singularity: software/Containers.md
       - Singularity Recicpe Hints: software/SingularityRecipeHints.md
       - Singularity Example Definitions: software/SingularityExampleDefinitions.md
-    - Custom Easy Build Modules: software/CustomEasyBuildEnvironment.md
-    - Mathematics: software/Mathematics.md
+      - VM tools: software/VMTools.md
+    - Applications:
+      - Bio Informatics: software/Bioinformatics.md
+      - Computational Fluid Dynamics (CFD): software/CFD.md
+      - NanoscaleSimulations: software/NanoscaleSimulations.md
+      - FEMSoftware: software/FEMSoftware.md
     - Visualization: software/Visualization.md
     - HPC-DA:
       - Get started with HPC-DA: software/GetStartedWithHPCDA.md
@@ -39,14 +46,8 @@ nav:
       - Dask: software/Dask.md
       - Power AI: software/PowerAI.md
       - PyTorch: software/PyTorch.md
-    - Computational Fluid Dynamics (CFD): software/CFD.md
-    - FAQs: software/modules-faq.md
-    - Bio Informatics: software/Bioinformatics.md
     - SCS5 Migration Hints: software/SCS5Software.md
-    - NanoscaleSimulations: software/NanoscaleSimulations.md
-    - FEMSoftware: software/FEMSoftware.md
     - Cloud: software/Cloud.md
-    - VM tools: software/VMTools.md
     - Virtual Desktops: software/VirtualDesktops.md
     - Software Development and Tools:
       - Overview: software/SoftwareDevelopment.md
@@ -58,8 +59,9 @@ nav:
       - Score-P: software/ScoreP.md
       - PAPI Library: software/PapiLibrary.md 
       - Perf Tools: software/PerfTools.md 
-      - PIKA: software/pika.md
+      - PIKA: software/PIKA.md
       - Vampir: software/Vampir.md
+      - Mathematics: software/Mathematics.md
   - Data Management:
     - Overview: data_management/DataManagement.md
     - Announcement of Quotas: data_management/AnnouncementOfQuotas.md