From 918f990b3e8287d3001fe31dc060ccca4ef5f6f5 Mon Sep 17 00:00:00 2001 From: Jan Frenzel <jan.frenzel@tu-dresden.de> Date: Wed, 15 Jun 2022 11:47:42 +0200 Subject: [PATCH] Renamed menu entries for PyTorch, TensorBoard and TensorFlow. --- doc.zih.tu-dresden.de/docs/software/pytorch.md | 2 +- doc.zih.tu-dresden.de/docs/software/tensorboard.md | 2 +- doc.zih.tu-dresden.de/docs/software/tensorflow.md | 4 ++-- doc.zih.tu-dresden.de/mkdocs.yml | 6 +++--- 4 files changed, 7 insertions(+), 7 deletions(-) diff --git a/doc.zih.tu-dresden.de/docs/software/pytorch.md b/doc.zih.tu-dresden.de/docs/software/pytorch.md index e84f3aac5..4d03aec66 100644 --- a/doc.zih.tu-dresden.de/docs/software/pytorch.md +++ b/doc.zih.tu-dresden.de/docs/software/pytorch.md @@ -1,4 +1,4 @@ -# PyTorch +# Neural Networks with PyTorch [PyTorch](https://pytorch.org/) is an open-source machine learning framework. It is an optimized tensor library for deep learning using GPUs and CPUs. diff --git a/doc.zih.tu-dresden.de/docs/software/tensorboard.md b/doc.zih.tu-dresden.de/docs/software/tensorboard.md index f7d344807..0dcaf39ad 100644 --- a/doc.zih.tu-dresden.de/docs/software/tensorboard.md +++ b/doc.zih.tu-dresden.de/docs/software/tensorboard.md @@ -1,4 +1,4 @@ -# TensorBoard +# Inspect Model Training with TensorBoard TensorBoard is a visualization toolkit for TensorFlow and offers a variety of functionalities such as presentation of loss and accuracy, visualization of the model graph or profiling of the diff --git a/doc.zih.tu-dresden.de/docs/software/tensorflow.md b/doc.zih.tu-dresden.de/docs/software/tensorflow.md index 016d6aa25..2329dc12c 100644 --- a/doc.zih.tu-dresden.de/docs/software/tensorflow.md +++ b/doc.zih.tu-dresden.de/docs/software/tensorflow.md @@ -1,4 +1,4 @@ -# TensorFlow +# Neural Networks with TensorFlow [TensorFlow](https://www.tensorflow.org) is a free end-to-end open-source software library for data flow and differentiable programming across many tasks. It is a symbolic math library, used primarily @@ -136,7 +136,7 @@ changing default values for parameters. Thus in some cases, it makes code writte 1.X not compatible with TensorFlow 2.X. However, If you are using the high-level APIs (`tf.keras`) there may be little or no action you need to take to make your code fully [TensorFlow 2.0](https://www.tensorflow.org/guide/migrate) compatible. It is still possible to -run 1.X code, unmodified (except for contrib), in TensorFlow 2.0: +run 1.X code, unmodified (except for `contrib`), in TensorFlow 2.0: ```python import tensorflow.compat.v1 as tf diff --git a/doc.zih.tu-dresden.de/mkdocs.yml b/doc.zih.tu-dresden.de/mkdocs.yml index e96b6c65e..a9fab6873 100644 --- a/doc.zih.tu-dresden.de/mkdocs.yml +++ b/doc.zih.tu-dresden.de/mkdocs.yml @@ -52,9 +52,9 @@ nav: - Big Data Analytics: software/big_data_frameworks.md - Machine Learning: - Overview: software/machine_learning.md - - TensorFlow: software/tensorflow.md - - TensorBoard: software/tensorboard.md - - PyTorch: software/pytorch.md + - Neural Networks with TensorFlow: software/tensorflow.md + - Inspect Model Training with TensorBoard: software/tensorboard.md + - Neural Networks with PyTorch: software/pytorch.md - Distributed Training: software/distributed_training.md - Hyperparameter Optimization (OmniOpt): software/hyperparameter_optimization.md - Machine Learning with PowerAI: software/power_ai.md -- GitLab