diff --git a/doc.zih.tu-dresden.de/docs/software/data_analytics_with_python.md b/doc.zih.tu-dresden.de/docs/software/data_analytics_with_python.md index 8f065ad61cfd1202ff60245a4ff73da2b339e587..bab0d055aa65061b50cb145d62b9a629ed288e6c 100644 --- a/doc.zih.tu-dresden.de/docs/software/data_analytics_with_python.md +++ b/doc.zih.tu-dresden.de/docs/software/data_analytics_with_python.md @@ -99,9 +99,6 @@ Dask is composed of two parts: - Dynamic task scheduling optimized for computation and interactive computational workloads. -- Big Data collections like parallel arrays, data frames, and lists - that extend common interfaces like NumPy, Pandas, or Python - iterators to larger-than-memory or distributed environments. These - Big Data collections like parallel arrays, data frames, and lists that extend common interfaces like NumPy, Pandas, or Python iterators to larger-than-memory or distributed environments. These parallel collections run on top of dynamic task schedulers.