diff --git a/doc.zih.tu-dresden.de/docs/access/jupyterhub.md b/doc.zih.tu-dresden.de/docs/access/jupyterhub.md index 585b0dd8d408e4eb1301b4e7b1a554d329e16aed..65f09283c437ef74f5c130317bbbd6a9196428a7 100644 --- a/doc.zih.tu-dresden.de/docs/access/jupyterhub.md +++ b/doc.zih.tu-dresden.de/docs/access/jupyterhub.md @@ -180,7 +180,6 @@ home directory and have the name `jupyter-session-<jobid>.log`. ## Advanced Tips - ### Standard Environments The default Python kernel uses conda environments based on the @@ -211,7 +210,8 @@ As of July 2022 we have a number of standard environments, namely: | scs5_gcccore-10.3.0_python-3.9.5_matlab-2021b | x86_64 (Intel) | matlab | modenv/scs5 | default, haswell, interactive, gpu2, hpdlf, dcv, julia | | scs5_gcccore-8.3.0_python-3.7.4 | x86_64 (Intel) | | modenv/scs5 | default, haswell, interactive, gpu2, hpdlf, dcv, julia | -<p style="font-size: 80%;">Actually 'romeo', 'alpha' and 'ml' refer to their respective interactive partitions 'romeo-interactive', 'alpha-interactive', 'ml-interactive' to reduce job queue waiting time.</p> +<p style="font-size: 80%;">Actually 'romeo', 'alpha' and 'ml' refer to their respective interactive +partitions 'romeo-interactive', 'alpha-interactive', 'ml-interactive' to reduce job queue waiting time.</p> We also have a more [in depth description regarding Modules](../software/modules.md#module-environments). @@ -241,8 +241,6 @@ With these **standard environments** we have tried to integrate a set of compati Can be utilized with the partitions gpu2, alpha and ml It's specially geared towards GPU support. - - ### Loading Modules You have now the option to preload modules from the [module system](../software/modules.md). @@ -261,4 +259,3 @@ but similarly provide basic functionality for running your use cases, e.g. Python or R) You can find further documentation on creating your own Kernels [here](./jupyterhub_custom_environments.md) - diff --git a/doc.zih.tu-dresden.de/docs/access/jupyterhub_custom_environments.md b/doc.zih.tu-dresden.de/docs/access/jupyterhub_custom_environments.md index f6dfe33a552bdb4e2223ae754fa0584a9971f474..851b4fbd4c0005de71b2cff6e66f2d34fc8b0805 100644 --- a/doc.zih.tu-dresden.de/docs/access/jupyterhub_custom_environments.md +++ b/doc.zih.tu-dresden.de/docs/access/jupyterhub_custom_environments.md @@ -56,7 +56,9 @@ to either use "Python virtualenv" or "conda environment". ## Python Virtualenv -While we have a general description on [Python Virtual Environments](/software/python_virtual_environments/), here we have a more detailed description on using them with JupyterHub: +While we have a general description on +[Python Virtual Environments](/software/python_virtual_environments/), here we have a more detailed +description on using them with JupyterHub: Depending on the CPU architecture that you are targeting, please choose a `modenv`: