diff --git a/doc.zih.tu-dresden.de/docs/jobs_and_resources/capella.md b/doc.zih.tu-dresden.de/docs/jobs_and_resources/capella.md index 6b82a999c6658727c213cd6aa138e3e73ae300f2..3347343e7e9ad009fdf35e700facacf7661713cf 100644 --- a/doc.zih.tu-dresden.de/docs/jobs_and_resources/capella.md +++ b/doc.zih.tu-dresden.de/docs/jobs_and_resources/capella.md @@ -20,69 +20,30 @@ HPC simulations. Capella has a fast WEKAio file system mounted on `/data/cat`. It is only mounted on Capella and the [Datamover nodes](../data_transfer/datamover.md). -It should be used as the main working file system on Capella. -Although all other [filesystems](../data_lifecycle/file_systems.md) -(`/home`, `/software`, `/data/horse`, `/data/walrus`, etc.) are also available. - -### Modules - -The easiest way is using the [module system](../software/modules.md). -All software available from the module system has been deliberately build for the cluster `Alpha` -i.e., with optimization for Zen4 (Genoa) microarchitecture and CUDA-support enabled. - -To check the available modules for `Capella`, use the command - -```console -marie@login.capella$ module spider <module_name> -``` - -??? example "Example: Searching and loading PyTorch" +It should be used as the main working file system on Capella and has to used by [workspaces](../data_lifecycle/file_systems.md). +Workspaces can only be created on Capella login and compute nodes, not on the other clusters. - For example, to check which `PyTorch` versions are available you can invoke - - ```console - marie@login.capella$ module spider PyTorch - - ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ - PyTorch: PyTorch/2.1.2-CUDA-12.1.1 - ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ - Description: - Tensors and Dynamic neural networks in Python with strong GPU acceleration. PyTorch is a deep learning framework that puts Python first. +Although all other [filesystems](../data_lifecycle/workspaces.md) +(`/home`, `/software`, `/data/horse`, `/data/walrus`, etc.) are also available. +!!! - You will need to load all module(s) on any one of the lines below before the "PyTorch/2.1.2-CUDA-12.1.1" module is available to load. + We recommend to store your data on `/data/walrus` in an archive file and only move your hot data via + [Datamover nodes](../data_transfer/datamover.md) into `/data/cat` which should be used as a fast + staging memory. - release/24.04 GCC/12.3.0 OpenMPI/4.1.5 - - Help: - Description - =========== - Tensors and Dynamic neural networks in Python with strong GPU acceleration. - PyTorch is a deep learning framework that puts Python first. - - - More information - ================ - - Homepage: https://pytorch.org/ - ``` +### Modules - ```console - marie@login.capella$ python -c "import torch; print(torch.__version__); print(torch.cuda.is_available())" - 2.1.12 - True - ``` +The easiest way using software is using the [module system](../software/modules.md). +All software available from the module system has been deliberately build for the cluster `Capella` +i.e., with optimization for Zen4 (Genoa) microarchitecture and CUDA-support enabled. ### Python Virtual Environments [Virtual environments](../software/python_virtual_environments.md) allow you to install additional Python packages and create an isolated runtime environment. We recommend using -`virtualenv` for this purpose. - -An example how to create an [python virtual environment with `torchvision` package](alpha_centauri.md#python-virtual-environments) is - described for the GPU alpha cluster and is identical if you are using the Capella cluster. - +`venv` for this purpose. !!! hint We recommend to use [workspaces](../data_lifecycle/workspaces.md) for your virtual environments. -