From 8474993cc6c1bd33d9e6dc4cace11ae3ad5c08d6 Mon Sep 17 00:00:00 2001 From: Martin Schroschk <martin.schroschk@tu-dresden.de> Date: Thu, 4 Nov 2021 08:22:15 +0100 Subject: [PATCH] Fix spelling --- doc.zih.tu-dresden.de/docs/software/pytorch.md | 18 +++++++++--------- doc.zih.tu-dresden.de/wordlist.aspell | 2 ++ 2 files changed, 11 insertions(+), 9 deletions(-) diff --git a/doc.zih.tu-dresden.de/docs/software/pytorch.md b/doc.zih.tu-dresden.de/docs/software/pytorch.md index 923ed7e73..e84f3aac5 100644 --- a/doc.zih.tu-dresden.de/docs/software/pytorch.md +++ b/doc.zih.tu-dresden.de/docs/software/pytorch.md @@ -2,10 +2,10 @@ [PyTorch](https://pytorch.org/) is an open-source machine learning framework. It is an optimized tensor library for deep learning using GPUs and CPUs. -PyTorch is a machine learning tool developed by Facebooks AI division to process large-scale +PyTorch is a machine learning tool developed by Facebook's AI division to process large-scale object detection, segmentation, classification, etc. PyTorch provides a core data structure, the tensor, a multi-dimensional array that shares many -similarities with Numpy arrays. +similarities with NumPy arrays. Please check the software modules list via @@ -47,7 +47,7 @@ Module GCC/10.2.0, CUDA/11.1.1, OpenMPI/4.0.5, PyTorch/1.9.0 and 54 dependencies ``` Using the **--no-deps** option for "pip install" is necessary here as otherwise the PyTorch - version might be replaced and you will run into trouble with the cuda drivers. + version might be replaced and you will run into trouble with the CUDA drivers. On the partition `ml`: @@ -65,8 +65,8 @@ marie@login$ module spider pytorch we know that we can load PyTorch (including torchvision) with ```console -marie@ml$ module load modenv/ml torchvision/0.7.0-fosscuda-2019b-Python-3.7.4-PyTorch-1.6.0 -Module torchvision/0.7.0-fosscuda-2019b-Python-3.7.4-PyTorch-1.6.0 and 55 dependencies loaded. +marie@ml$ module load modenv/ml torchvision/0.7.0-fossCUDA-2019b-Python-3.7.4-PyTorch-1.6.0 +Module torchvision/0.7.0-fossCUDA-2019b-Python-3.7.4-PyTorch-1.6.0 and 55 dependencies loaded. ``` Now, we check that we can access PyTorch: @@ -110,17 +110,17 @@ For details on how to run PyTorch with multiple GPUs and/or multiple nodes, see It is recommended to use GPUs when using large training data sets. While TensorFlow automatically uses GPUs if they are available, in PyTorch you have to move your tensors manually. -First, you need to import `torch.cuda`: +First, you need to import `torch.CUDA`: ```python3 -import torch.cuda +import torch.CUDA ``` -Then you define a `device`-variable, which is set to 'cuda' automatically when a GPU is available +Then you define a `device`-variable, which is set to 'CUDA' automatically when a GPU is available with this code: ```python3 -device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') +device = torch.device('CUDA' if torch.CUDA.is_available() else 'cpu') ``` You then have to move all of your tensors to the selected device. This looks like this: diff --git a/doc.zih.tu-dresden.de/wordlist.aspell b/doc.zih.tu-dresden.de/wordlist.aspell index a34ccf8cb..c376b8b17 100644 --- a/doc.zih.tu-dresden.de/wordlist.aspell +++ b/doc.zih.tu-dresden.de/wordlist.aspell @@ -320,6 +320,8 @@ todo ToDo toolchain toolchains +torchvision +Torchvision tracefile tracefiles transferability -- GitLab