From 767f7529628e6fdea7c9d4bded4284a55e99f14e Mon Sep 17 00:00:00 2001 From: Natalie Breidenbach <natalie.breidenbach@tu-dresden.de> Date: Tue, 28 Nov 2023 14:39:56 +0100 Subject: [PATCH] Update tensorflow.md --- .../docs/software/tensorflow.md | 29 ++++++++++--------- 1 file changed, 16 insertions(+), 13 deletions(-) diff --git a/doc.zih.tu-dresden.de/docs/software/tensorflow.md b/doc.zih.tu-dresden.de/docs/software/tensorflow.md index f11ecb3ac..06cf153f7 100644 --- a/doc.zih.tu-dresden.de/docs/software/tensorflow.md +++ b/doc.zih.tu-dresden.de/docs/software/tensorflow.md @@ -17,13 +17,16 @@ to find out, which TensorFlow modules are available on your partition. On ZIH systems, TensorFlow 2 is the default module version. For compatibility hints between TensorFlow 2 and TensorFlow 1, see the corresponding [section below](#compatibility-tf2-and-tf1). -We recommend using partitions `alpha` and/or `ml` when working with machine learning workflows +We recommend using the clusters `alpha` and/or `power` when working with machine learning workflows and the TensorFlow library. You can find detailed hardware specification in our [Hardware](../jobs_and_resources/hardware_overview.md) documentation. ## TensorFlow Console -On the partition `alpha`, load the module environment: +_The module environments /hiera, /scs5, /classic and /ml originated from the old taurus system are momentarily under construction. The script will be updated after completion of the redesign accordingly_ + + +On the cluster `alpha`, load the module environment: ```console marie@alpha$ module load modenv/scs5 @@ -47,17 +50,17 @@ marie@alpha$ module avail TensorFlow [...] ``` -On the partition `ml` load the module environment: +On the cluster `power` load the module environment: ```console -marie@ml$ module load modenv/ml +marie@power$ module load modenv/ml The following have been reloaded with a version change: 1) modenv/scs5 => modenv/ml ``` This example shows how to install and start working with TensorFlow using the modules system. ```console -marie@ml$ module load TensorFlow +marie@power$ module load TensorFlow Module TensorFlow/2.3.1-fosscuda-2019b-Python-3.7.4 and 47 dependencies loaded. ``` @@ -68,16 +71,16 @@ import TensorFlow: !!! example ```console - marie@ml$ ws_allocate -F scratch python_virtual_environment 1 + marie@power$ ws_allocate -F /data/horse python_virtual_environment 1 Info: creating workspace. - /scratch/ws/1/python_virtual_environment + /data/horse/ws/1/python_virtual_environment [...] - marie@ml$ which python #check which python are you using + marie@power$ which python #check which python are you using /sw/installed/Python/3.7.2-GCCcore-8.2.0 - marie@ml$ virtualenv --system-site-packages /scratch/ws/1/marie-python_virtual_environment/env + marie@power$ virtualenv --system-site-packages /data/horse/ws/1/marie-python_virtual_environment/env [...] - marie@ml$ source /scratch/ws/1/marie-python_virtual_environment/env/bin/activate - marie@ml$ python -c "import tensorflow as tf; print(tf.__version__)" + marie@power$ source /data/horse/ws/1/marie-python_virtual_environment/env/bin/activate + marie@power$ python -c "import tensorflow as tf; print(tf.__version__)" [...] 2.3.1 ``` @@ -105,7 +108,7 @@ Another option to use TensorFlow are containers. In the HPC domain, the following example, we use the tensorflow-test in a Singularity container: ```console -marie@ml$ singularity shell --nv /scratch/singularity/powerai-1.5.3-all-ubuntu16.04-py3.img +marie@power$ singularity shell --nv /data/horse/singularity/powerai-1.5.3-all-ubuntu16.04-py3.img Singularity>$ export PATH=/opt/anaconda3/bin:$PATH Singularity>$ source activate /opt/anaconda3 #activate conda environment (base) Singularity>$ . /opt/DL/tensorflow/bin/tensorflow-activate @@ -156,5 +159,5 @@ marie@compute$ module spider Keras [...] ``` -to find out, which Keras modules are available on your partition. TensorFlow should be automatically +to find out, which Keras modules are available on your cluster. TensorFlow should be automatically loaded as a dependency. After loading the module, you can use Keras as usual. -- GitLab