diff --git a/doc.zih.tu-dresden.de/docs/jobs_and_resources/capella.md b/doc.zih.tu-dresden.de/docs/jobs_and_resources/capella.md index 3347343e7e9ad009fdf35e700facacf7661713cf..97f2bff9245c68f72d64ac4560f99cc01e402efc 100644 --- a/doc.zih.tu-dresden.de/docs/jobs_and_resources/capella.md +++ b/doc.zih.tu-dresden.de/docs/jobs_and_resources/capella.md @@ -3,18 +3,14 @@ ## Overview The multi-GPU cluster `Capella` has been installed for AI-related computations and traditional -HPC simulations. - -## Details - -- 144 nodes, each with - - 4 x NVIDIA H100-SXM5 Tensor Core-GPUs - - 2 x AMD EPYC CPU 9334 (32 cores) @ 2.7 GHz, Multithreading disabled - - 768 GB RAM (12 x 32 GB DDR5-4800 MT/s per socket) - - 800 GB local storage on NVMe device at `/tmp` -- Login nodes: `login[1-2].capella.hpc.tu-dresden.de` -- Hostnames: `c[1-144].capella.hpc.tu-dresden.de` -- Operating system: Alma Linux 9.4 +HPC simulations. Capella is fully integrated into the ZIH HPC infrastructure. +Therefore, the usage should be similar to the other clusters. + +## Login + +You use `login[1-2].capella.hpc.tu-dresden.de` to access the system from campus (or VPN). +In order to verify the SSH fingerprints of the login nodes, please refer to the page +[Fingerprints](../access/key_fingerprints.md#capella). ## Filesystems