From 32e86ffb1f02a6f7cf19b1d3582144e4f70e3012 Mon Sep 17 00:00:00 2001 From: Martin Schroschk <martin.schroschk@tu-dresden.de> Date: Tue, 28 Sep 2021 12:52:05 +0200 Subject: [PATCH] Merge, fix links and linter issues --- doc.zih.tu-dresden.de/docs/jobs_and_resources/slurm.md | 8 +++++--- doc.zih.tu-dresden.de/docs/software/pytorch.md | 4 ++-- doc.zih.tu-dresden.de/docs/software/tensorboard.md | 2 +- doc.zih.tu-dresden.de/docs/software/tensorflow.md | 2 +- 4 files changed, 9 insertions(+), 7 deletions(-) diff --git a/doc.zih.tu-dresden.de/docs/jobs_and_resources/slurm.md b/doc.zih.tu-dresden.de/docs/jobs_and_resources/slurm.md index aef8504d1..606e64e19 100644 --- a/doc.zih.tu-dresden.de/docs/jobs_and_resources/slurm.md +++ b/doc.zih.tu-dresden.de/docs/jobs_and_resources/slurm.md @@ -248,7 +248,6 @@ provide a comprehensive collection of job examples. * Submisson: `marie@login$ sbatch batch_script.sh` * Run with fewer MPI tasks: `marie@login$ sbatch --ntasks 14 batch_script.sh` - ## Manage and Control Jobs ### Job and Slurm Monitoring @@ -321,6 +320,7 @@ We'd like to point your attention to the following options gain insight in your ```console marie@login$ sacct -j <JOBID> ``` + ??? example "Show all fields for a specific job" ```console @@ -332,8 +332,9 @@ We'd like to point your attention to the following options gain insight in your ```console marie@login$ sacct -j <JOBID> -o JobName,MaxRSS,MaxVMSize,CPUTime,ConsumedEnergy ``` -The manual page (`man sacct`) and the [online reference](https://slurm.schedmd.com/sacct.html) provide a -comprehensive documentation regarding available fields and formats. + +The manual page (`man sacct`) and the [online reference](https://slurm.schedmd.com/sacct.html) +provide a comprehensive documentation regarding available fields and formats. !!! hint "Time span" @@ -427,6 +428,7 @@ srun --ntasks 8 --cpus-per-task $OMP_NUM_THREADS ./application  {: align=center} + ## Node Features for Selective Job Submission The nodes in our HPC system are becoming more diverse in multiple aspects: hardware, mounted diff --git a/doc.zih.tu-dresden.de/docs/software/pytorch.md b/doc.zih.tu-dresden.de/docs/software/pytorch.md index e8e2c4d5e..63d3eb91e 100644 --- a/doc.zih.tu-dresden.de/docs/software/pytorch.md +++ b/doc.zih.tu-dresden.de/docs/software/pytorch.md @@ -18,7 +18,7 @@ to find out, which PyTorch modules are available on your partition. We recommend using **Alpha** and/or **ML** partitions when working with machine learning workflows and the PyTorch library. You can find detailed hardware specification in our -[hardware documentation](../jobs_and_resources/hardware_taurus.md). +[hardware documentation](../jobs_and_resources/hardware_overview.md). ## PyTorch Console @@ -44,7 +44,7 @@ Module GCC/10.2.0, CUDA/11.1.1, OpenMPI/4.0.5, PyTorch/1.9.0 and 54 dependencies marie@alpha$ pip install torchvision --no-deps ``` - Using the **--no-deps** option for "pip install" is necessary here as otherwise the PyTorch + Using the **--no-deps** option for "pip install" is necessary here as otherwise the PyTorch version might be replaced and you will run into trouble with the cuda drivers. On the **ML** partition: diff --git a/doc.zih.tu-dresden.de/docs/software/tensorboard.md b/doc.zih.tu-dresden.de/docs/software/tensorboard.md index a1fab030b..d2c838d39 100644 --- a/doc.zih.tu-dresden.de/docs/software/tensorboard.md +++ b/doc.zih.tu-dresden.de/docs/software/tensorboard.md @@ -81,4 +81,4 @@ marie@local$ ssh -N -f -L 6006:taurusi8034.taurus.hrsk.tu-dresden.de:6006 <zih-l Now, you can see the TensorBoard in your browser at `http://localhost:6006/`. -Note that you can also use TensorBoard in an [sbatch file](../jobs_and_resources/batch_systems.md). +Note that you can also use TensorBoard in an [sbatch file](../jobs_and_resources/slurm.md). diff --git a/doc.zih.tu-dresden.de/docs/software/tensorflow.md b/doc.zih.tu-dresden.de/docs/software/tensorflow.md index d8ad85c3b..09a8352a3 100644 --- a/doc.zih.tu-dresden.de/docs/software/tensorflow.md +++ b/doc.zih.tu-dresden.de/docs/software/tensorflow.md @@ -19,7 +19,7 @@ TensorFlow 2 and TensorFlow 1, see the corresponding [section below](#compatibil We recommend using partitions **Alpha** and/or **ML** when working with machine learning workflows and the TensorFlow library. You can find detailed hardware specification in our -[Hardware](../jobs_and_resources/hardware_taurus.md) documentation. +[Hardware](../jobs_and_resources/hardware_overview.md) documentation. ## TensorFlow Console -- GitLab