diff --git a/doc.zih.tu-dresden.de/docs/software/gpu_programming.md b/doc.zih.tu-dresden.de/docs/software/gpu_programming.md index 28612b63b28990323f514a3edeb268f6ae616abb..dc45a045cafbbd2777845fbb7a648fd542e82345 100644 --- a/doc.zih.tu-dresden.de/docs/software/gpu_programming.md +++ b/doc.zih.tu-dresden.de/docs/software/gpu_programming.md @@ -6,6 +6,24 @@ The full hardware specifications of the GPU-compute nodes may be found in the [HPC Resources](../jobs_and_resources/hardware_overview.md#hpc-resources) page. Note that the clusters may have different [modules](modules.md#module-environments) available: +E.g. the available CUDA versions can be listed with + +```bash +marie@compute$ module spider CUDA +``` + +Note that some modules use a specific CUDA version which is visible in the module name, +e.g. `GDRCopy/2.1-CUDA-11.1.1` or `Horovod/0.28.1-CUDA-11.7.0-TensorFlow-2.11.0`. + +This especially applies to the optimized CUDA libraries like `cuDNN`, `NCCL` and `magma`. + +!!! important "CUDA-aware MPI" + + When running CUDA applications using MPI for interprocess communication you need to additionally load the modules + that enable CUDA-aware MPI which may provide improved performance. + Those are `UCX-CUDA` and `UCC-CUDA` which supplement the `UCX` and `UCC` modules respectively. + Some modules, like `NCCL`, load those automatically. + ## Using GPUs with Slurm For general information on how to use Slurm, read the respective [page in this compendium](../jobs_and_resources/slurm.md).