diff --git a/doc.zih.tu-dresden.de/docs/jobs_and_resources/alpha_centauri.md b/doc.zih.tu-dresden.de/docs/jobs_and_resources/alpha_centauri.md index 5324f550e30e66b6ec6830cf7fddbb921b0dbdbf..67c3168d23b7edb4a0128ead8ac3fcf0bf96520a 100644 --- a/doc.zih.tu-dresden.de/docs/jobs_and_resources/alpha_centauri.md +++ b/doc.zih.tu-dresden.de/docs/jobs_and_resources/alpha_centauri.md @@ -1,13 +1,13 @@ -# Alpha Centauri - Multi-GPU sub-cluster +# Alpha Centauri - Multi-GPU Sub-Cluster -The sub-cluster "AlphaCentauri" had been installed for AI-related computations (ScaDS.AI). +The sub-cluster "Alpha Centauri" had been installed for AI-related computations (ScaDS.AI). It has 34 nodes, each with: -- 8 x NVIDIA A100-SXM4 (40 GB RAM) -- 2 x AMD EPYC CPU 7352 (24 cores) @ 2.3 GHz with multithreading enabled -- 1 TB RAM 3.5 TB `/tmp` local NVMe device -- Hostnames: `taurusi[8001-8034]` -- Slurm partition `alpha` for batch jobs and `alpha-interactive` for interactive jobs +* 8 x NVIDIA A100-SXM4 (40 GB RAM) +* 2 x AMD EPYC CPU 7352 (24 cores) @ 2.3 GHz with multi-threading enabled +* 1 TB RAM 3.5 TB `/tmp` local NVMe device +* Hostnames: `taurusi[8001-8034]` +* Slurm partition `alpha` for batch jobs and `alpha-interactive` for interactive jobs !!! note @@ -23,8 +23,8 @@ The software for the `alpha` partition is available in `modenv/hiera` module env To check the available modules for `modenv/hiera`, use the command -```bash -module spider <module_name> +```console +marie@alpha$ module spider <module_name> ``` For example, to check whether PyTorch is available in version 1.7.1: @@ -95,11 +95,11 @@ Successfully installed torchvision-0.10.0 ### JupyterHub -[JupyterHub](../access/jupyterhub.md) can be used to run Jupyter notebooks on AlphaCentauri +[JupyterHub](../access/jupyterhub.md) can be used to run Jupyter notebooks on Alpha Centauri sub-cluster. As a starting configuration, a "GPU (NVIDIA Ampere A100)" preset can be used in the advanced form. In order to use latest software, it is recommended to choose `fosscuda-2020b` as a standard environment. Already installed modules from `modenv/hiera` -can be pre-loaded in "Preload modules (modules load):" field. +can be preloaded in "Preload modules (modules load):" field. ### Containers @@ -109,6 +109,6 @@ Detailed information about containers can be found [here](../software/containers Nvidia [NGC](https://developer.nvidia.com/blog/how-to-run-ngc-deep-learning-containers-with-singularity/) containers can be used as an effective solution for machine learning related tasks. (Downloading -containers requires registration). Nvidia-prepared containers with software solutions for specific +containers requires registration). Nvidia-prepared containers with software solutions for specific scientific problems can simplify the deployment of deep learning workloads on HPC. NGC containers have shown consistent performance compared to directly run code. diff --git a/doc.zih.tu-dresden.de/wordlist.aspell b/doc.zih.tu-dresden.de/wordlist.aspell index 9e1a9835ecd531acb5f131906f94cc4e54e8e8aa..c8b2c530bf1ddad273c373899e9c40387e24216b 100644 --- a/doc.zih.tu-dresden.de/wordlist.aspell +++ b/doc.zih.tu-dresden.de/wordlist.aspell @@ -47,6 +47,7 @@ ecryptfs engl english env +EPYC Espresso ESSL fastfs @@ -78,6 +79,7 @@ HDFS HDFView Horovod hostname +Hostnames HPC HPL html @@ -133,11 +135,13 @@ natively NCCL Neptun NFS +NGC NRINGS NUMA NUMAlink NumPy Nutzungsbedingungen +Nvidia NVMe NWChem OME @@ -169,6 +173,8 @@ PMI png PowerAI ppc +Preload +preloaded PSOCK Pthreads pymdownx @@ -220,6 +226,7 @@ stdout subdirectories subdirectory SUSE +SXM TBB TCP TensorBoard