
Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

intel.com/software/products

Agenda

1

Time Title

09:00-09:15 Welcome, Introduction

09:15-09:45
Overview –

Intel Processor Architecture Evolution

09:45-10:15 Intel’s Software Development offerings at a glance

10:15-11:15
Strategies for Parallelism with Intel® Threading

Methodologies

11:15-12:30
Intel® Composer XE – the powerful compiler and

performance libraries collection

12:30-13:30 Break

13:30-14:00 Intel® Inspector XE - Detect memory and threading errors

14:00-14:30 Intel® Amplifier XE - Understand performance issues

14:30-15:00 Intel® Advisor XE – Get started with parallelization

15:00-16:00
Intel Development Tools for Multi-threading in a typical
Development Cycle – Life-Demo – Wrap-up

16:00- ... Q&A, opens, discussion

http://intel.com/software/products

Intel® Multithreading
Methodologies

Hubert Haberstock

Technical Consulting Engineer

Developer Products Division

Intel Corp.

One day seminar at TU Dresden, Oct 17, 2013

Software & Services Group

Developer Products Division Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

System/Processor Performance
Increase

GHz Era Multi-core Era

TIME

P
ER

FO
R

M
A

N
CE

Many-core Era

3

Software & Services Group

Developer Products Division Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners. 4

Advanced Tools to Develop Code for Intel® Xeon®
Processors Today, Easily Extends to Intel® MIC

Architecture

“By just utilizing standard programming

on both Intel® Xeon processor and Intel®

MIC architecture based platforms, the

performance met multi-threading

scalability expectations and we

observed near-theoretical linear

performance scaling with the number

of threads.” – Hongsuk Yi,

Heterogeneous Computing Team

Leader, KISTI Supercomputing Center

“SGI understands the significance of inter-

processor communications, power, density and

usability when architecting for exascale. Intel

has made the leap towards exaflop computing

with the introduction of Intel® Many Integrated

Core (MIC) architecture. Future Intel® MIC

products will satisfy all four of these priorities,

especially with their expected ten times

increase in compute density coupled with their

familiar X86 programming environment.” –

Dr. Eng Lim Goh, SGI CTO

Software & Services Group

Developer Products Division Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Win32 API Native Threads
„Explicit Threads“

• The OS provides a library implementing an API for
creating, managing and destroying threads

• Advantages of thread libraries:
–The thread library gives you detailed control over

the threads
• Disadvantage of thread libraries:

–The thread library REQUIRES that you take detailed
control over the threads

• Full control over all aspects of threading
• Requires thorough understanding of threading

mechanisms
• Significant code bloat

– “re-invent the wheel” with each application
– hard to maintain

• Not portable among OSs

5

Software & Services Group

Developer Products Division Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

POSIX* Threads (Pthreads*)

• Create threads to execute work encapsulated within
functions

• Typical to wait for threads to terminate
• Coordinate shared access between threads to avoid race

conditions
– Local storage to avoid conflicts
– Synchronization objects to organize use

• Full control over all aspects of threading
• Requires thorough understanding of threading

mechanisms
• Significant code bloat

– “re-invent the wheel” with each application
– hard to maintain

• Not portable among OSs

6

Software & Services Group

Developer Products Division Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Our running Example: The PI program

Numerical Integration


4.0

(1+x2)
dx = 

0

1

 F(xi)x  
i = 0

N

Mathematically, we know that:

We can approximate the integral as

a sum of rectangles:

Where each rectangle has width x and

height F(xi) at the middle of interval i.

4.0

2.0

1.0

X
0.0

7

Software & Services Group

Developer Products Division Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

PI Program:
The sequential program

static long num_steps = 100000;
double step;
void main ()
{
 int i;
 double x, pi, sum = 0.0;
 step = 1.0/(double) num_steps;

 for (i=1;i<= num_steps; i++){
 x = (i-0.5)*step;
 sum = sum + 4.0/(1.0+x*x);
 }

 pi = step * sum;
}

8

Software & Services Group

Developer Products Division Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Win32 API - Complex and Error Prone

#include <windows.h>
#define NUM_THREADS 2
HANDLE thread_handles[NUM_THREADS];
CRITICAL_SECTION hUpdateMutex;
static long num_steps = 100000;
double step;
double global_sum = 0.0;

void Pi (void *arg)
{
 int i, start;
 double x, sum = 0.0;

 start = *(int *) arg;
 step = 1.0/(double) num_steps;

 for (i=start;i<= num_steps;
 i=i+NUM_THREADS){
 x = (i-0.5)*step;
 sum = sum + 4.0/(1.0+x*x);
 }
 EnterCriticalSection(&hUpdateMutex);
 global_sum += sum;
 LeaveCriticalSection(&hUpdateMutex);
}

void main ()
{
 double pi; int i;
 DWORD threadID;
 int threadArg[NUM_THREADS];

 for(i=0; i<NUM_THREADS; i++)
 threadArg[i] = i+1;

 InitializeCriticalSection(&hUpdateMutex);

 for (i=0; i<NUM_THREADS; i++){
 thread_handles[i] = CreateThread(0, 0,
 (LPTHREAD_START_ROUTINE) Pi,
 &threadArg[i], 0, &threadID);
 }

 WaitForMultipleObjects(NUM_THREADS,
 thread_handles, TRUE,INFINITE);

 pi = global_sum * step;

 printf(" pi is %f \n",pi);
}

9

Software & Services Group

Developer Products Division Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Example - Pi-computation with reduction

#include <omp.h>

static long num_steps = 100000;

double step;

#define NUM_THREADS 2

void main ()

{ int i;

 double x, pi, sum = 0.0;

 step = 1.0/(double) num_steps;

 omp_set_num_threads(NUM_THREADS);

 #pragma omp parallel for reduction(+:sum) private(x)

 for (i=1;i<= num_steps; i++){

 x = (i-0.5)*step;

 sum = sum + 4.0/(1.0+x*x);

 }

 pi = step * sum;

}

Focus on application Logic, not implementation

10

Software & Services Group

Developer Products Division Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

OpenMP* – A Standard

• OS independent specification, standardized by www.openmp.org
• Thread Control via compiler pragmas, library routines and

environment variables
• Intel® C++ Compiler :

– /Qopenmp, -openmp to enable recognition of directives

– /Qopenmp-report:0|1|2, -openmp-report0|1|2

 ‚0‘ is report disabled, ‚2‘ maximum diagnostics level

 to provide information about program sections that could be parallelized.
 - Header file or Fortran module

#include “omp.h”
use omp_lib

– OpenMP 4.0 RC2 support
• Advantage over native threads:

– Incremental approach: insert pragmas (use /Qopenmp)

– Easily switch back to original code (use/Qopenmp-stubs)

– Threading internals hidden from the user
• Disadvantage over native threads:

– Less detailed control of threading internals

11

http://www.openmp.org/

Software & Services Group

Developer Products Division Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Programming Model

Fork-join parallelism:

• Master thread spawns a team of threads

• Parallelism is added incrementally: the
sequential program evolves into a parallel
program

Parallel Regions

Master
Thread

12

Software & Services Group

Developer Products Division Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

OpenMP* with Intel Compilers

13

• Intel® Composer XE 2013 compilers support OpenMP* 3.1
Plus some extensions (KMP_*) like:

– KMP_DETERMINISTIC_REDUCTIONS (new!)

– KMP_AFFINITY

– KMP_PLACE_THREADS (new!)

– …

• Intel® Composer XE 2013 Update 2 OpenMP* 4.0 (RC1!) support
started:

• Vectorization

• Execution on coprocessors

• Both have already been there as Intel only extensions
(different syntax, though)

Software & Services Group

Developer Products Division Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

OpenMP* with Intel Compilers (2)

14

• Intel® Composer XE 2013 SP1 (rel. 4th Sep 2013)
- OpenMP* 4.0 (RC2!) support

• User-defined reductions (UDRs)

• SIMD support

• Task extensions

• Accelerator support

• Cancellation support

• Extensions

– Affinity

– Atomic

OpenMP* 4.0 status

• C/C++:
http://software.intel.com/en-us/articles/openmp-40-features-in-intel-c-composer-xe-2013

• Fortran:
http://software.intel.com/en-us/articles/openmp-40-features-in-intel-fortran-composer-xe-2013

http://software.intel.com/en-us/articles/openmp-40-features-in-intel-c-composer-xe-2013
http://software.intel.com/en-us/articles/openmp-40-features-in-intel-c-composer-xe-2013
http://software.intel.com/en-us/articles/openmp-40-features-in-intel-c-composer-xe-2013
http://software.intel.com/en-us/articles/openmp-40-features-in-intel-c-composer-xe-2013
http://software.intel.com/en-us/articles/openmp-40-features-in-intel-c-composer-xe-2013
http://software.intel.com/en-us/articles/openmp-40-features-in-intel-c-composer-xe-2013
http://software.intel.com/en-us/articles/openmp-40-features-in-intel-c-composer-xe-2013
http://software.intel.com/en-us/articles/openmp-40-features-in-intel-c-composer-xe-2013
http://software.intel.com/en-us/articles/openmp-40-features-in-intel-c-composer-xe-2013
http://software.intel.com/en-us/articles/openmp-40-features-in-intel-c-composer-xe-2013
http://software.intel.com/en-us/articles/openmp-40-features-in-intel-c-composer-xe-2013
http://software.intel.com/en-us/articles/openmp-40-features-in-intel-c-composer-xe-2013
http://software.intel.com/en-us/articles/openmp-40-features-in-intel-c-composer-xe-2013
http://software.intel.com/en-us/articles/openmp-40-features-in-intel-c-composer-xe-2013
http://software.intel.com/en-us/articles/openmp-40-features-in-intel-c-composer-xe-2013
http://software.intel.com/en-us/articles/openmp-40-features-in-intel-c-composer-xe-2013
http://software.intel.com/en-us/articles/openmp-40-features-in-intel-c-composer-xe-2013
http://software.intel.com/en-us/articles/openmp-40-features-in-intel-c-composer-xe-2013
http://software.intel.com/en-us/articles/openmp-40-features-in-intel-c-composer-xe-2013
http://software.intel.com/en-us/articles/openmp-40-features-in-intel-fortran-composer-xe-2013
http://software.intel.com/en-us/articles/openmp-40-features-in-intel-fortran-composer-xe-2013
http://software.intel.com/en-us/articles/openmp-40-features-in-intel-fortran-composer-xe-2013
http://software.intel.com/en-us/articles/openmp-40-features-in-intel-fortran-composer-xe-2013
http://software.intel.com/en-us/articles/openmp-40-features-in-intel-fortran-composer-xe-2013
http://software.intel.com/en-us/articles/openmp-40-features-in-intel-fortran-composer-xe-2013
http://software.intel.com/en-us/articles/openmp-40-features-in-intel-fortran-composer-xe-2013
http://software.intel.com/en-us/articles/openmp-40-features-in-intel-fortran-composer-xe-2013
http://software.intel.com/en-us/articles/openmp-40-features-in-intel-fortran-composer-xe-2013
http://software.intel.com/en-us/articles/openmp-40-features-in-intel-fortran-composer-xe-2013
http://software.intel.com/en-us/articles/openmp-40-features-in-intel-fortran-composer-xe-2013
http://software.intel.com/en-us/articles/openmp-40-features-in-intel-fortran-composer-xe-2013
http://software.intel.com/en-us/articles/openmp-40-features-in-intel-fortran-composer-xe-2013
http://software.intel.com/en-us/articles/openmp-40-features-in-intel-fortran-composer-xe-2013
http://software.intel.com/en-us/articles/openmp-40-features-in-intel-fortran-composer-xe-2013
http://software.intel.com/en-us/articles/openmp-40-features-in-intel-fortran-composer-xe-2013
http://software.intel.com/en-us/articles/openmp-40-features-in-intel-fortran-composer-xe-2013
http://software.intel.com/en-us/articles/openmp-40-features-in-intel-fortran-composer-xe-2013
http://software.intel.com/en-us/articles/openmp-40-features-in-intel-fortran-composer-xe-2013

Software & Services Group

Developer Products Division Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

User-defined reductions: Motivation

• Allows to extend what types and operations are
allowed in an OpenMP reduction clause:

struct point {

int x;

int y;

};

struct point points[N];

struct point min = { MAX_INT, MAX_INT }, max = {0,0};

#pragma omp parallel for reduction(….)

for (int i = 0; i < N; i++)

{

 if (point[i].x < min.x) min.x = point[i].x;

 if (point[i].y < min.y) min.y = point[i].y;

 if (point[i].x > max.x) max.x = point[i].x;

 if (point[i].y > max.y) max.y = point[i].y;

}

15

Not possible
before 4.0

Software & Services Group

Developer Products Division Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

User-defined reductions: declaration

• New declarative directive

#pragma omp declare reduction(reduction-identifier : typename-list : combiner)
[initializer-clause]

!$omp declare reduction(reduction-identifier : type-list : combiner) [initializer-clause]

• reduction-identifier is the “operator” name given to this reduction

• combiner specifies how to combine two elements of one the specified
types

– Only two special variables can be used:
– omp_in

– omp_out

– In C/C++, an expression

– In Fortran, either an assignment statement or subroutine name with its
arguments

– no CALL keyword

16

Software & Services Group

Developer Products Division Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

User-defined reductions: example

struct point {

int x;

int y;

};

#pragma omp declare reduction(min : struct point : \

 omp_out.x = omp_in.x > omp_out.x ? omp_out.x : omp_in.x, \

 omp_out.y = omp_in.y > omp_out.y ? omp_out.y : omp_in.y) \

 initializer(omp_priv = { MAX_INT, MAX_INT })

#pragma omp declare reduction(max : struct point : \

 omp_out.x = omp_in.x < omp_out.x ? omp_out.x : omp_in.x, \

 omp_out.y = omp_in.y < omp_out.y ? omp_out.y : omp_in.y) \

 initializer(omp_priv = { 0,0 })

struct point points[N];

struct point minp = { MAX_INT, MAX_INT }, maxp = {0,0};

#pragma omp parallel for reduction(min:minp) reduction(max:maxp)

for (int i = 0; i < N; i++)

{

 if (point[i].x < minp.x) minp.x = point[i].x;

 if (point[i].y < minp.y) minp.y = point[i].y;

 if (point[i].x > maxp.x) maxp.x = point[i].x;

 if (point[i].y > maxp.y) maxp.y = point[i].y;

}

17

Not really necessary

Used here as a
regular reduction

Software & Services Group

Developer Products Division Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

SIMD Support: motivation

• Provides a portable high-level mechanism to
specify SIMD parallelism

– Heavily based on Intel’s SIMD directive

• Two main new directives

– To SIMDize loops

– To create SIMD functions

18

Software & Services Group

Developer Products Division Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

SIMD loops: syntax

#pragma omp simd [clauses]

 for-loop

!$omp simd [clauses]

 do-loops

[!$omp end simd]

• Loop has to be in “Canonical loop form”

– as do/for worksharing

19

Software & Services Group

Developer Products Division Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

SIMD loop clauses

• safelen (length)
– Maximum number of iterations that can run concurrently

without breaking a dependence
– in practice, maximum vector length

• linear (list[:linear-step])
– The variable value is in relationship with the iteration number

– xi = xorig + i * linear-step

• aligned (list[:alignment])
– Specifies that the list items have a given alignment

– Default is alignment for the architecture

• private (list)

• lastprivate (list)

• reduction (operator:list)

• collapse (n)

20

Same as existing
clauses

Software & Services Group

Developer Products Division Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

SIMD loop example

double pi()

{

 double pi = 0.0;

 double t;

#pragma omp simd private(t) reduction(+:pi)

 for (i=0; i<count; i++) {

 t = (double)((i+0.5)/count);

 pi += 4.0/(1.0+t*t);

 }

 pi /= count

 return pi;

}

21

Software & Services Group

Developer Products Division Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

SIMD functions: Syntax

#pragma omp declare simd [clauses]

[#pragma omp declare simd [clauses]]

 function definition or declaration

!$omp declare simd (function-or-procedure-name)
[clauses]

• Instructs the compiler to

– generate a SIMD-enabled version(s) of a given function

– that a SIMD-enabled version of the function is available to
use from a SIMD loop

22

Software & Services Group

Developer Products Division Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

SIMD functions: clauses

• simdlen(length)
– generate function to support a given vector length

• uniform(argument-list)
– argument has a constant value between the iterations of a

given loop

• inbranch
– function always called from inside an if statement

• notinbranch
– function never called from inside an if statement

• linear(argument-list[:linear-step])

• aligned(argument-list[:alignment])

• reduction(operator:list)

23

Same as before

Software & Services Group

Developer Products Division Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

SIMD combined constructs

• Worksharing + SIMD

 #pragma omp for simd [clauses]

 !$omp do simd [clauses]

 [!$omp end do simd]

– First vectorize the loop, then distribute the resulting
iterations among threads

• Parallel + worksharing + SIMD

#pragma omp parallel for simd [clause[[,] clause] ...]

!$omp parallel do simd [clause[[,] clause] ...]

!$omp end parallel do simd

24

Software & Services Group

Developer Products Division Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

SIMD functions example

#pragma omp simd notinbranch

float min(float a, float b) {

 return a < b ? a : b;

}

#pragma omp simd notinbrach

float distsq(float x, float y) {

 return (x - y) * (x - y);

}

#pragma omp parallel for simd

 for (i=0; i<N; i++)

 d[i] = min(distsq(a[i], b[i]), c[i]);

25

Software & Services Group

Developer Products Division Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Cancellation Constructs

• Parallel execution cannot be aborted in OpenMP 3.1

– Code regions must always run to completion

– (or not start at all)

• Cancellation in OpenMP 4.0 provides a best-effort
approach to terminate OpenMP regions

– Best-effort: not guaranteed to trigger termination
immediately

– Triggered “as soon as” possible

• Two constructs:
– Cancellation request: #pragma omp cancel

– Cancellation points: #pragma omp cancellation point

26

Software & Services Group

Developer Products Division Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

cancel Construct

• Syntax:
#pragma omp cancel construct-type-clause [[,]if-
clause]
!$omp cancel construct-type-clause [[,]if-clause]

• Clauses:
parallel

sections

for (C/C++)

do (Fortran)

taskgroup

if (scalar-expression)

• Semantics
– Requests cancellation of the inner-most OpenMP region of the

type specified

– Lets the encountering thread/task proceed to the region

27

Software & Services Group

Developer Products Division Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

cancellation point Construct

• Syntax:
#pragma omp cancellation point construct-type-clause
!$omp omp cancellation point construct-type-clause

• Clauses:
parallel

sections

for (C/C++)

do (Fortran)

taskgroup

• Semantics
– Introduces a user-defined cancellation point

– Pre-defined cancellation points:
– implicit/explicit barriers regions

– cancel regions

28

Software & Services Group

Developer Products Division Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

OpenMP* - Sudoku Tasking Sample
void main()

{

/* Sudoku Bord aufsetzen */

#pragma omp parallel

{

#pragma omp single

{

#pragma omp taskgroup

 {

 solve_parallel(0, 0, sudoku);

 }

}

}

}

void solve_parallel(int x, int y, CSudokuBoard* sudoku, CSudokuBoard* & solution)

{

 if (x == sudoku->getFieldSize()) { // end of line

 y++; x = 0;

 if(y == sudoku->getFieldSize()) // end

 return true;

 }

 if (sudoku->get(y, x) > 0) { // field already set

 return solve_parallel(x+1, y, sudoku); // tackle next field

 }

 for (int i = 1; i <= sudoku->getFieldSize(); i++) { // try all numbers

 if (!sudoku->check(x, y, i)) {

#pragma omp task firstprivate(i,x,y,sudoku)

 {

 CSudokuBoard* new_sudoku = new CSudokuBoard(*sudoku);

 new_sudoku->set(y, x, i); // if number fits, set it

 if (solve_parallel(x+1, y, new_sudoku)) { // tackle next field

 // remember Sudoku board and stop parallel execution

#pragma omp critical

 if (!solution) {

 solution = new_sudoku;

#pragma omp cancel taskgroup

 }

 }

 delete new_sudoku;

 }

 }

 }

#pragma omp taskwait

 sudoku->set(y, x, 0); // no solution found, reset field

}

29

• Parallel Region

• Single Task

• Taskgroup

• solve_parallel
• Check for new field

• for //try all members

• Create Tasks to find solutions

• Critical Section to check for
solution

• Cancel Taskgroup if solution
found (clear memory)

Close Tasks

• Reset field if no solution

Software & Services Group

Developer Products Division Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Atomic Extensions

• OpenMP 3.1 introduced “atomic capture”

– Allow to capture the old/new value of an atomic update

– Need to implement scheduling-type algorithms

– Update to next element

– Process current element

– New clauses

– read: atomically read a variable

– write: atomically write a variable

– update: “old behavior” of atomic

– capture: capture old value before update

• OpenMP 4.0 introduces sequentially consistent atomics

– New clause: seq_cst

– Includes a flush without a list

30

Software & Services Group

Developer Products Division Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Atomic Extensions: Examples

#pragma omp atomic read
v = x // atomically read x and store in v

#pragma omp atomic write

x = y + z; // atomically update x

#pragma omp atomic update

x++; // atomically increment x

#pragma omp atomic capture

{v = x; x += 1;} // capture value of x BEFORE update

#pragma omp atomic capture

{x += 1; v = x} // capture value of x AFTER update

31

Software & Services Group

Developer Products Division Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Accelerator Support

• OpenMP 4 will support accelerators and
coprocessors

• Device model:

– One host

– Multiple accelerators/coprocessors of the same kind

32

Host
Coprocessors

Software & Services Group

Developer Products Division Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

target declare Clauses

• C/C++

#pragma omp declare target new-line

 [function-definition-or-declaration]

#pragma omp end declare target new-line

• Fortran

!$omp declare target [(proc-name-list | list)] new-line

33

Software & Services Group

Developer Products Division Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

target Clauses

#pragma omp target [clause[[,] clause],...] new-line
structured-block

 Clauses: device(scalar-integer-expression)

 map(alloc | to | from | tofrom: list)
 if(scalar-expr)

#pragma omp target data [clause[[,] clause],...] new-line
structured-block

 Clauses: device(scalar-integer-expression)

 map(alloc | to | from | tofrom: list)
 if(scalar-expr)

#pragma omp target update [clause[[,] clause],...] new-line

 Clauses: to(list)
 from(list)
 device(integer-expression)
 if(scalar-expression)

 34

Software & Services Group

Developer Products Division Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Examples

35

#pragma omp target map(to(b:count)) map(to(c,d)) map(from(a:count))

 {

#pragma omp parallel for

 for (i=0; i<count; i++) {

 a[i] = b[i] * c + d;

 }

 }

#pragma omp target data map(alloc(tmp:N)) map(in(input:N)) map(from(result))

 {

#pragma omp parallel

 {

#pragma omp for

 for (i=0; i<N; i++)

 tmp[i] = some_computation(input[i], i);

#pragma omp single

 do_some_other_stuff(tmp);

#pragma omp for reduction(+:result)

 for (i=0; i<N; i++)

 result += final_computation(tmp[i], i)

 }

Software & Services Group

Developer Products Division Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Execution Model

• The target construct transfers the control flow to the target device

– The transfer clauses control direction of data flow

– Array notation is used to describe array length

• The target data construct creates a scoped device data environment

– The transfer clauses control direction of data flow

– Device data environment is valid through the lifetime of the target data region

• Use target update to request data transfers from within a target data
region

36

Host Device

#pragma target …
{...}

alloc(…)
1

from(…)

4

to(…)
2

pA

3

Software & Services Group

Developer Products Division Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

OpenMP Affinity

• OpenMP 3.1 introduced a thread binding interface

• OpenMP 4 extends the interface to allow for full thread affinity
– Vendor-agnostic affinity settings (e.g. no more KMP_AFFINITY)

– Easier interaction between environment and OpenMP runtime

• Terminology:
– Place: unordered set of processors

– Place list: ordered list of available places for execution

– Place partition: Contiguous interval in the place list

• Policies / affinity types:
– Master: keep worker threads in the same place partition as the

master thread

– Close: keep worker threads “close” to the master thread in
contiguous place partitions

– Spread: create a sparse distribution of worker threads across the
place partitions

37

Software & Services Group

Developer Products Division Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

OpenMP Affinity

• Additional clause for parallel regions:
proc_bind(affinity-type)

• Environment variables control the affinity settings:

– OMP_PROC_BIND
e.g., export OMP_PROC_BIND=“spread,spread,close”

– OMP_PLACES
e.g., export
OMP_PLACES=“{0,1,2,3},{4,5,6,7},{8:4},{12:4}”

• Places are system-specific and are not defined by
OpenMP

38

Software & Services Group

Developer Products Division Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

OpenMP 4.0* (RC2) – Target

• Ideal for coprocessors like Intel® Xeon Phi™ (Intel® MIC):

• C/C++:
#pragma omp declare target

 [function-definition-or-declaration]

#pragma omp end declare target

• Fortran:
!$omp declare target [(proc-name-list|list)]

• Similar to existing explicit offload constructs from Intel.

• Existing code just requires minimal changes!

39

Software & Services Group

Developer Products Division Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

OpenMP 4.0* (RC2) – Target Clauses

• #pragma omp target [clause[[,] clause],...]

structured-block

Clauses:
– device(scalar-integer-expression)

– map(alloc | to | from | tofrom: list)

– if(scalar-expr)

• #pragma omp target data [clause[[,] clause],...]

structured-block

Clauses:
– device(scalar-integer-expression)

– map(alloc | to | from | tofrom: list)

– if(scalar-expr)

• #pragma omp target update [clause[[,] clause],...]

Clauses:
– to(list)

– from(list)

– device(integer-expression)

– if(scalar-expression)

40

Software & Services Group

Developer Products Division Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

OpenMP 4.0* (RC2) – Target Example

41

#pragma omp target data device(0)

 map(alloc:tmp[0:N]) map(to:input[:N)) map(from:result)

{

#pragma omp target device(0)

#pragma omp parallel for

 for (i=0; i<N; i++)

 tmp[i] = some_computation(input[i], i);

 do_some_other_stuff_on_host();

#pragma omp target device(0)

#pragma omp parallel for reduction(+:result)

 for (i=0; i<N; i++)

 result += final_computation(tmp[i], i)

}

Software & Services Group

Developer Products Division Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

OpenMP 4.0* (RC2) – Other features

42

#pragma omp target data device(0)

 map(alloc:tmp[0:N]) map(to:input[:N)) map(from:result)

{

#pragma omp target device(0)

#pragma omp parallel for

 for (i=0; i<N; i++)

 tmp[i] = some_computation(input[i], i);

 do_some_other_stuff_on_host();

#pragma omp target device(0)

#pragma omp parallel for reduction(+:result)

 for (i=0; i<N; i++)

 result += final_computation(tmp[i], i)

}

Software & Services Group

Developer Products Division Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Summary

• OpenMP 4.0 is the next major release of the
OpenMP API

• Biggest additions

– Tasking extensions

– SIMD constructs

– Accelerator/coprocessor support

• Lots of minor improvements

• OpenMP 4.0 will put OpenMP a big step forward

43

Software & Services Group

Developer Products Division Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Simplify Parallelism
Intel® Cilk™ Plus, Intel® Threading Building Blocks

Intel® Cilk™ Plus

• #pragma SIMD and array notation:
easy-to-use, powerful vectorization

• 3 simple keywords for parallelism
• Support for task & data parallelism
• Semantics similar to serial code

• Simple way to vectorize, parallelize
your code

• Sequentially consistent, low over-
head, powerful solution

• Supports C, C++, Windows and
Linux

• Get more from your IA hardware

Intel® Threading Building
Blocks

• Parallel algorithms and data
structures

• Scalable memory allocation and
task scheduling

• Synchronization primitives

• Rich feature set for general
purpose parallelism

• Available as open source or
commercial license

• Supports C++, Windows, Linux,
Mac OS X, other OSs

What

Features

Why

Language extensions to
simplify task/data parallelism

Widely used C++ template
library for task parallelism

Vectorization and Parallelism Made Easier

Compilers
&
Libraries

44

Software & Services Group

Developer Products Division Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Intel® Cilk™ Plus
History

• MIT Cilk
• Over 15 years
• C only

• Cilk Arts, Inc. (acquired by Intel in 2009)

• Ported MIT Cilk to C++ (Intel® Cilk++)

• Intel® Cilk™ Plus
• Integrated in Intel® Compiler + extensions (C & C++)

• Open sourced Intel® Cilk™ Plus

• Supported by GCC (branch)

45

Software & Services Group

Developer Products Division Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Intel® Cilk™ Plus

Keywords
Set of keywords, for expression

of task parallelism:

cilk_spawn

cilk_sync

cilk_for

Reducers
Reliable access to nonlocal variables

without races

cilk::reducer_opadd<int> sum(3);

CEAN
Provide data parallelism for

arrays

mask[:] = a[:] < b[:] ?

-1 : 1;

Elementary
functions

Define actions that can be
applied to whole or parts of

arrays or scalars

Execution parameters
Runtime system APIs, Environment variables, pragmas

Task parallelism

Data parallelism

46

SIMD
Pragma
Directive to

extend
vectorization

Software & Services Group

Developer Products Division Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Ways to Write Vector Code

47

for(i = 0; i < N; i++){

 A[i] = B[i] + C[i];

}

(Auto-)Vectorization

A[:] = B[:] + C[:];

Array Notation for C/C++

#pragma simd

for(i = 0; i < N; i++) {

 A[i] = B[i] + C[i];

}

SIMD Pragma/Directive

__declspec(vector)

float foo(float B, float C, int

i)

{

 return B + C;

}

…

for(i = 0; i < N; i++) {

 A[i] = foo(B[i], C[i], i); }

Elemental Function

Data Level Parallelism with
Intel® Cilk™ Plus

Software & Services Group

Developer Products Division Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Broader adoption of technology

• ​Intel Cilk Plus is available in the "cilkplus" branch of

the GCC 4.8

• Explicit vectorization adopted by the OpenMP 4.0
specification.

– #pragma omp simd [clause[[,] clause] ...] new-line

– applied to a loop; indicates that the loop can be transformed
into a SIMD loop

– #pragma omp declare simd

– applied to a function to enable the creation of a version that
can process arguments using SIMD instructions from a single
invocation from a SIMD loop.

48

http://gcc.gnu.org/svn/gcc/branches/cilkplus
http://gcc.gnu.org/svn/gcc/branches/cilkplus
http://gcc.gnu.org/svn/gcc/branches/cilkplus

Software & Services Group

Developer Products Division Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

New Parallelism Method:
Intel® Cilk™ Plus

• An extension to C and C++ for expressing fine-grained task
parallelism
– Shared-memory multiprocessing (like OpenMP)

• Very simple syntax of 3 keywords only: _cilk_spawn and
_cilk_sync, _cilk_for
– #include <cilk/cilk.h>

• Every Cilk program preserves the serial semantic
• Cilk provides performance guarantees since it is based on

theoretically efficient work-stealing scheduler
• Preventing races using reducer hyperobjects
• Array Notations (CEAN) to provide data parallelism for

sections of arrays or whole arrays
• Elemental Functions to enable data parallelism of whole

functions or operations
• #pragma SIMD to express vector parallelism using SIMD

hardware registers

49

Software & Services Group

Developer Products Division Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners. 50

What’s New: Intel® Cilk™ Plus
Increased Performance and Scalability

• Improved SIMD pragma loops and elemental functions
vectorization support provides enhanced scalability and
performance

• Enhanced performance and productivity with new Holder
Hyperobjects for per-thread temporary storage feature

• SIMD pragma loops and elemental functions support for nested
loops, array notation, switch statements, and break/continue
statements

• More architectural and scalable way to define vector lengths with
new SIMD pragma clause “vectorlengthfor” support of vectorization
of loops and elemental functions

• Expanded Mac OS support

Software & Services Group

Developer Products Division Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Intel® Cilk™ Plus keywords

• Cilk Plus adds three keywords to C and C++:
_Cilk_spawn

_Cilk_sync

_Cilk_for

• If you #include <cilk/cilk.h>, you can write the
keywords as cilk_spawn, cilk_sync, and
cilk_for.

• Cilk Plus runtime controls thread creation and
scheduling. A thread pool is created prior to use of
Cilk Plus keywords.

• The number of threads matches the number of
cores by default, but can be controlled by the user.

51

Software & Services Group

Developer Products Division Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Programmers View of Cilk

• Cilk key words and convenient aliases
#include <cilk/cilk.h>

cilk_spawn alias _Cilk_spawn

cilk_sync alias _Cilk_sync

cilk_for alias _Cilk_for

• API
__cilkrts_set_param(“nworkers”, “4”)

__cilkrts_get_nworkers()

__cilkrts_get_total_workers()

__cilkrts_get_worker_number()

• Environment variable
CILK_NWORKERS

52

Software & Services Group

Developer Products Division Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

cilk_spawn and cilk_sync

•cilk_spawn gives the runtime permission to run a

child function asynchronously.

– No 2nd thread is created or required!

– If there are no available workers, then the child will
execute as a serial function call.

– The scheduler may steal the parent and run it in parallel
with the child function.

– The parent is not guaranteed to run in parallel with the
child.

•cilk_sync waits for all children to complete before

execution proceeds from that point.

– There are implicit cilk_sync points – will discuss later

53

Software & Services Group

Developer Products Division Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

void f()
{
 g();
 work
 work
 work

 work
}

void g()
{
 work
 work
 work
}

Serial Execution

54

Software & Services Group

Developer Products Division Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

void f()
{
 cilk_spawn g();
 work
 work
 work
 cilk_sync;
 work
}

void g()
{
 work
 work
 work
}

s
p
a
w

n
in

g

fu
n
c
ti
o
n
 (

p
a
re

n
t)

continuation

spawned
function
(child)

spawn

sync

Anatomy of a spawn

55

Software & Services Group

Developer Products Division Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

when no other worker is available

void f()
{
 cilk_spawn g();
 work
 work
 work
 cilk_sync;
 work
}

void g()
{
 work
 work
 work
}

Worker
A

Same behavior
as serial
execution!

Work stealing

56

Software & Services Group

Developer Products Division Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

void f()
{
 cilk_spawn g();
 work
 work
 work
 cilk_sync;
 work
}

void g()
{
 work
 work
 work
}

Worker
A

Worker
B

Worker
A/B

steal!

when other worker is available

Work stealing

57

Software & Services Group

Developer Products Division Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

A Note on Load Balancing

•The Cilk scheduler does automatic load
balancing

•An idle worker will find work to do !

•If the program has enough parallelism,
then all workers will stay busy

58

Software & Services Group

Developer Products Division Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Work-stealing Overheads

• Spawning is cheap (3-5 times the cost of a function
call)

• Stealing is much more expensive (requires locks
and memory barriers)

• Most spawns do not result in steals.

• Balanced work loads  less stealing less

overhead.

59

Software & Services Group

Developer Products Division Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

cilk_for loop

• Looks like a normal for loop.

 cilk_for (int x = 0; x < 1000000; ++x) { … }

• Any or all iterations may execute in parallel with
one another.

• All iterations complete before program continues.

• Constraints:

– Limited to a single control variable.

– Must be able to jump to the start of any iteration at
random.

– Iterations should be independent of one another.

60

Software & Services Group

Developer Products Division Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

cilk_for vs. serial for with spawn

• Compare the following loops:

for (int x = 0; x < n; ++x) { cilk_spawn f(x); }

cilk_for (int x = 0; x < n; ++x) { f(x); }

• The above two loops have similar semantics, but…

• they have very different performance
characteristics.

61

Software & Services Group

Developer Products Division Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

cilk_for (int x; x < 1000000; x += 2) { … }

cilk_for (vector<int>::iterator x = y.begin();

 x != y.end(); ++x) { … }

cilk_for (list<int>::iterator x = y.begin();

 x != y.end(); ++x) { … }

cilk_for examples

62

http://escapevavau.net/images/big-tick.jpg
http://escapevavau.net/images/big-tick.jpg

Software & Services Group

Developer Products Division Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

If work per
iteration is small
then steal overhead can
be significant

Serial for with spawn: unbalanced

0 - 7

1 - 7

1

0

spawn

Worker
A

Worker
B

2 - 7

2

3 7 - 7

7

4
5

6

spawn

steal!

steal!

steal!
steal!

steal!
steal!

steal!

3 - 7
4 - 7

5 - 7
6 - 7

63

Software & Services Group

Developer Products Division Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

cilk_for: Divide and Conquer

0 - 7

4 - 7 0 - 3

2 - 3 0 - 1 6 - 7 4 - 5

1 0 3 2 5 4 7 6

spawn

return

spawn

Worker
A

Worker
B steal!

Divide and conquer results in fewer steals and less overhead.

64

cilk_for (int i=0; i< 8; ++i)
 f(i);

continuation

continuation

Software & Services Group

Developer Products Division Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Serialization

• Every Cilk Plus program has an equivalent serial
program called the serialization

• The serialization is obtained by removing
cilk_spawn and cilk_sync keywords and
replacing cilk_for with for

– The compiler will produce the serialization for you if you
compile with /Qcilk-serialize (Windows)

• Running with only one worker is equivalent to
running the serialization.

65

Software & Services Group

Developer Products Division Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Serial Semantics

• A deterministic Cilk Plus program will have the
same semantics as its serialization.

– Easier regression testing

– Easier to debug:

– Run with one core

– Run serialized

– Strong analysis tools (Cilk Plus-specific versions will be
posted on WhatIf)

– race detector

– parallelism analyzer

66

Software & Services Group

Developer Products Division Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

void f() {
 cilk_spawn g();
 cilk_for (int x = 0; x < lots; ++x) {
 ...
 }
 try {
 cilk_spawn h();
 }
 catch (...) {
 ...
 }
}

At end of a spawning function

At end of a cilk_for body (does not sync g())

At end of a try block containing a spawn

Before entering a try block containing a sync

Implicit syncs

67

Software & Services Group

Developer Products Division Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

A Summing Example in Serial Code

int compute(const X& v);

int main()

{

 const std::size_t n = 1000000;

 extern X myArray[n];

 // ...

 int result = 0;

 for (std::size_t i = 0; i < n; ++i)

 {

 result += compute(myArray[i]);

 }

 std::cout << "The result is: "

 << result

 << std::endl;

 return 0;

}

68

Software & Services Group

Developer Products Division Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Summing Example in Intel® Cilk™ Plus

int compute(const X& v);

int main()

{

 const std::size_t n = 1000000;

 extern X myArray[n];

 // ...

 int result = 0;

 cilk_for (std::size_t i = 0; i < n; ++i)

 {

 result += compute(myArray[i]);

 }

 std::cout << "The result is: "

 << result

 << std::endl;

 return 0;

}

Race!

69

Software & Services Group

Developer Products Division Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Locking Solution
int compute(const X& v);

int main()

{

 const std::size_t n = 1000000;

 extern X myArray[n];

 // ...

 mutex L;

 int result = 0;

 cilk_for (std::size_t i = 0; i < n; ++i)

 {

 int temp = compute(myArray[i]);

 L.lock();

 result += temp;

 L.unlock();

 }

 std::cout << "The result is: "

 << result

 << std::endl;

 return 0;

}

Problems
Lock overhead &
lock contention.

70

Software & Services Group

Developer Products Division Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Intel® Cilk™ Plus Reducer Solution

int compute(const X& v);

int main()

{

 const std::size_t ARRAY_SIZE = 1000000;

 extern X myArray[ARRAY_SIZE];

 // ...

 cilk::reducer_opadd<int> result;

 cilk_for (std::size_t i = 0; i < ARRAY_SIZE; ++i)

 {

 result += compute(myArray[i]);

 }

 std::cout << "The result is: "

 << result.get_value()

 << std::endl;

 return 0;

}

Declare result to
be a summing

reducer over int.
Updates are resolved
automatically without
races or contention.

At the end, the
underlying int value
can be extracted.

71

Software & Services Group

Developer Products Division Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Reducer Library

Intel® Cilk™ Plus’s hyperobject library
contains many commonly used reducers:
• reducer_list_append

• reducer_list_prepend

• reducer_max

• reducer_max_index

• reducer_min

• reducer_min_index

• reducer_opadd

• reducer_ostream

• reducer_basic_string

• …

You can also write your own using
cilk::monoid_base and cilk::reducer.

72

Software & Services Group

Developer Products Division Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Reducer Benefits/Limitations

• Benefits

– Reducers do not suffer from lock contention

– Reducers retain serial semantics

– For example, a list or ostream reducer will retain the same
order you would get from serial execution

– Even a correct locking solution cannot guarantee this

• Limitations

– Operations on a reducer must be associative to behave
deterministically

– Refer to the operators supported by a particular reducer class
for safe operations to use

– Floating point types may get different results run-to-run

– If using custom data types for reducers, refer to the header
for the specific reducer for requirements

73

Software & Services Group

Developer Products Division Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Intel® Cilk™ Plus Array Notations

• Array Notations provide a syntax to specify sections of arrays
on which to perform operations

• syntax :: [<lower bound> : <length> : <stride>]

• Simple example

– a[0:N] = b[0:N] * c[0:N];

– a[:] = b[:] * c[:] // if a, b, c are declared with size N

• The Intel® C++ Compiler’s automatic vectorization can use
this information to apply single operations to multiple
elements of the array using Intel® Streaming SIMD
Extensions (Intel® SSE) and Intel® Advanced Vector
Extensions (Intel® AVX)
– Default is SSE2. Use compiler options (/Qx, /arch, /Qax) to change the

target.

• More advanced example

– x[0:10:10] = sin(y[20:10:2]);

74

Software & Services Group

Developer Products Division Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Array Section Notation

• Array Section Notation

 <array base> [<lower bound> : <length> [: <stride>]]

 [<lower bound> : <length> [: <stride>]].....

• Note that length is chosen.

– Not upper bound as in Fortran [lower bound : upper bound]

 A[:] // All elements of vector A

 B[2:6] // Elements 2 to 7 of vector B

 D[0:3:2] // Elements 0,2,4 of vector D

 E[0:3][0:4] // 12 elements from E[0][0] to E[2][3]

0 1 2 3 4 5 6 7 8 9
float B[10];

B[2:6] = …

75

Software & Services Group

Developer Products Division Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Operator Maps – Sections in Expressions

• Most arithmetic and logic operators for C/C++
basic data types are available for array sections:
+, -, *, /, %, <,==,!=,>,|,&,^,&&,||,!,-(unary),

+(unary),++,--, +=, -=, *=, /=, *(p)

• An operator is implicitly mapped to all the
elements of the array section operands:

 a[0:s]+b[2:s] => {a[i]+b[i+2], forall (i=0;i<s;i++)}

– Operations are parallel among all the elements

– Array operands must have the same rank

– Scalar operand is automatically expanded to fill the whole
section

a[0:s]*c => {a[i]*c, forall (i=0;i<s;i++)}

76

Software & Services Group

Developer Products Division Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Simple Example: Dot product

Serial version
float dot_product(unsigned int size, float A[size], float B[size])

{

 int i;

 float dp=0.0f;

 for (i=0; i<size; i++) {

 dp += A[i] * B[i];

 }

 return dp;

}

Array Notation version
float dot_product(unsigned int size, float A[size], float B[size])

{

 return __sec_reduce_add(A[:] * B[:]);

 // A[:] can also be written as A[0:size]

}

77

Software & Services Group

Developer Products Division Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Intel® Cilk™ Plus Array Notations Example

void foo(double * a, double * b, double * c, double * d, double * e, int n) {

 for(int i = 0; i < n; i++)

 a[i] *= (b[i] - d[i]) * (c[i] + e[i]);

}

void goo(double * a, double * b, double * c, double * d, double * e, int n) {

 a[0:n] *= (b[0:n] - d[0:n]) * (c[0:n] + e[0:n]);

}

icl -Qvec-report3 -c test-array-notations.cpp

test-array-notations.cpp(2) (col. 2): remark: loop was not vectorized: existence of vector dependence.

test-array-notations.cpp(3) (col. 3): remark: vector dependence: assumed FLOW dependence between a
line 3 and e line 3.

<…>

Test-array-notations.cpp(7) (col. 6): remark: LOOP WAS VECTORIZED.

78

Software & Services Group

Developer Products Division Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Why Data Parallel Extension to C/C++

• Current parallel hardware offers

– Data Level Parallelism, e.g. SIMD

– Thread Level Parallelism, e.g. TBB/Cilk/OpenMP

• Need for natural expression of DLP:

– Language must make it easy for developer to exploit
maximum hardware performance potential

– Need for data parallel extensions for familiar C/C++

– Natural mapping between data parallel constructs and
underlying parallel hardware to achieve high performance
and utilization.

– Let compiler do the heavy lifting!

79

Software & Services Group

Developer Products Division Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Reductions

• Reduction combines array section elements to generate a scalar result

• Some 10 built-in reduction functions supporting basic C data-types:

– add, mul, max, max_ind, min, min_ind, all_zero, all_non_zero, any_nonzero

• Supports user-defined reduction functions:



+

int a[] = {1,2,3,4};

sum = __sec_reduce_add(a[:]); // sum

 // is 10

type fn(type in1, type in2); // scalar reduction

function

out = __sec_reduce(fn, identity_value, in[x:y:z]);

80

Software & Services Group

Developer Products Division Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Function Maps

• A scalar function call is mapped to the elements of
array section parameters by default:

–Functions are mapped in parallel
–No specific order on side effects
–Compiler generates calls to vectorized library functions
–Compiler may generate vectorized function body for

function declared as __declspec(vector)

a[:] = sin(b[:]);

a[:] = pow(b[:], c); // b[:]**c

a[:] = pow(c, b[:]); // c**b[:]

a[:] = foo(b[:]) // user defined foo()

81

Software & Services Group

Developer Products Division Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Function Maps with Array Sections
“Elemental Functions”

• Compiler can convert a user-supplied scalar function to
vector function, when called with array notation arguments

• Compiler automatically maps the function across multiple array
elements (in example, the function becomes “a * x[:] + y[:]”)

// Plain C scalar function declared with __declspec(vector)

__declspec(vector) float saxpy (float a, float x, float y)

{

 return (a * x + y);

}

Z[:] = saxpy(A, X[:], Y[:]); // Call scalar function with

 // array notation parameters

82

Serial code
void saxpy(int n, float a, float *x, float *y) {

 for (int i = 0; i < n; ++i)

 y[i] += a * x[i];

}

Software & Services Group

Developer Products Division Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

when there is no steal

void f()
{
 cilk_spawn g();
 work
 sum += 2;
 work
 cilk_sync;
 work
}

void g()
{
 work
 sum++;
 work
}

Worker
A

Same behavior
as serial
execution!

cilk::reducer_opadd<int> sum(3); 3

initial view

4

6

Reducer Views

83

Software & Services Group

Developer Products Division Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

void f()
{
 cilk_spawn g();
 work
 sum += 2;
 work
 cilk_sync;
 work
}

void g()
{
 work
 sum++;
 work
}

Worker
A

Worker
B

Worker
A/B

steal!

cilk::reducer_opadd<int> sum(3); 3

4
0

initial view

2

identity

6

reduce

when continuation is stolen

Reducer Views

84

Software & Services Group

Developer Products Division Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Cilk’s hyperobject library contains many

commonly used reducers:
• reducer_list_append

• reducer_list_prepend

• reducer_max

• reducer_max_index

• reducer_min

• reducer_min_index

• reducer_opadd

• reducer_ostream

• reducer_basic_string

• …

You can also write your own using
cilk::monoid_base and cilk::reducer.

Reducer Library

85

Software & Services Group

Developer Products Division Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

1. Choose a type, a reduction operation, and an
identity value.

– This combination is known as a monoid

– The reduction operation must be associative, but need
not be commutative.

2. Declare a monoid class derived from
cilk::monoid_base.

3. Instantiate cilk::reducer with your monoid.

4. Optionally create a wrapper class for type safety.

Creating Your Own Reducer

86

Software & Services Group

Developer Products Division Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Algebraic Monoids

Definition. A monoid is

a triple (T, ⊗, e), where
∙T is a set,
∙⊗ is an associative

binary operator,
∙e is an identity for ⊗.

Associative
 a ⊗(b⊗c) = (a⊗b)⊗c

Identity
a⊗e = e⊗a = a

∙(int, +, 0)
∙(double, *, 1)
∙(bool, &&, true)
∙(std::list, concat, empty)
∙(int, max, INT_MIN)

Examples:

87

Software & Services Group

Developer Products Division Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Representing Monoids

In Cilk, we represent a monoid over T by a C++

class M that inherits from
cilk::monoid_base<T> and defines
∙ a static or const member function reduce()

that implements the binary operator ⊗ and
∙ a static or const member function identity()

that constructs a fresh identity, e.

Example:

struct sum_monoid : cilk::monoid_base<int> {

 static void reduce(int* left, int* right) {

 *left += *right; // store result into *left

 }

 static void identity(int* p) {

 new (p) int(0); // placement construction

 }

};

88

Software & Services Group

Developer Products Division Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Defining a Reducer

cilk::reducer<sum_monoid> x;

The local view of x can be accessed as x().

A reducer over sum_monoid may now be defined

as follows:

x() += value;

89

Software & Services Group

Developer Products Division Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Reducer Wrappers

Issues
∙ It is generally inconvenient to replace every

access to x in a legacy code base with x().
∙ Accesses to x are not safe. Nothing prevents

a programmer from writing “x() *= 2”, even
though the reducer is defined over +.

A wrapper class solves these problems.

class sum_reducer {

 cilk::reducer<sum_monoid> r;

public:

 sum_reducer(int v = 0) : r(v) { }

 sum_reducer& operator+=(int v) { r() += v; }

 sum_reducer& operator++() { r()++; }

 int get_value() const { return r(); }

 ...

};

90

Software & Services Group

Developer Products Division Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

A Taste of Reducers in C

#include <cilk/reducer_opadd.h>

long sum_array(long data[], size_t n)
{
 CILK_C_REDUCER_OPADD(r, int, 0);
 CILK_C_REGISTER_REDUCER(r);

 cilk_for (int j = 0; j < n; ++j)
 REDUCER_VIEW(*r) += data[j];

 CILK_C_UNREGISTER_REDUCER(r);
 return r.value;
}

declare opadd reducer over
int with initial value 0

In serial code, reducer’s final
value is accessible, even after
reducer has been unregistered.

register reducer with
runtime system

look up reducer view

unregister from runtime

Macros and idioms are needed to
make up for C’s lack of templates
and overloading

91

Software & Services Group

Developer Products Division Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Intel® Cilk™ Plus Elemental Functions

• The compiler can’t assume that user-defined
functions are safe for vectorization

• Now you can make your function an elemental
function which indicates to the compiler that such a
function can be applied to multiple elements of an
array in parallel safely.

• Specify __declspec(vector) on both function
declarations and definitions as this will affect name-
mangling.

92

Software & Services Group

Developer Products Division Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Intel® Cilk™ Plus Elemental Functions
Example

double user_function(double x);

__declspec(vector) double elemental_function(double x);

void foo(double *a, double *b, int n) {

 a[0:n] = user_function(b[0:n]);

}

void goo(double *a, double *b, int n) {

 a[0:n] = elemental_function(b[0:n]);

}

icl /Qvec-report3 /c test-elemental-functions.cpp

test-elemental-functions.cpp(4) (col. 39): remark: routine skipped: no vectorization
candidates.

test-elemental-functions.cpp(9) (col. 2): remark: LOOP WAS VECTORIZED.

93

Software & Services Group

Developer Products Division Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Pragma SIMD

• Write a C/C++/FTN standard loop, add a pragma to get the
compiler to vectorize it

• The compiler does not prove equivalence to sequential loop, no
performance heuristics

• The programmer may need to provide additional clauses for
correct code generation
– Private, reduction, scalar

• Elemental functions can be called from the loop

#pragma simd
for (j = 0; j < N; j++) {
 a[j] = my_ef(b[j]);
}

94

Software & Services Group

Developer Products Division Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Invoking Elemental Functions

Construct Example Semantics

Standard for
loop

for (j = 0; j < N; j++) {
 a[j] = my_ef(b[j]);
}

Single thread,
auto vectorization

#pragma simd #pragma simd
for (j = 0; j < N; j++) {
 a[j] = my_ef(b[j]);
}

Single thread,
Guaranteed to use
the vector version

cilk for loop cilk_for (j = 0; j < N;
j++) {
 a[j] = my_ef(b[j]);
}

Both vectorization
and concurrent
execution

Array notation a[:] = my_ef(b[:]); Vectorization.
[Concurrency not
yet implemented in
compiler]

95

Software & Services Group

Developer Products Division Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Mandelbrot in Cilk

cilk_for (int i = 0; i < max_row; i++) {

 for (int j = 0; j < max_col; j++) {

 p[i][j] = mandel(complex(scale(i), scale(j)), depth);

}}

One line change to sequential version

Compiler support hides complexity

int mandel(complex c, int max_count) {

 int count = 0; complex z = 0;

 for (int i = 0; i < max_count; i++) {

 if (abs(z) >= 2.0) break;

 z = z*z + c; count++;

 }

 return count;

}

96

Software & Services Group

Developer Products Division Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Cilk Plus – Sample
cilk_for, CEAN, Elemental Funtion

97

main()

 matrix_transpose()

 for()

 for() sum_squarroot()

 for()

 for() sqrt()

 for()

 for() subtract_squareroot()

Software & Services Group

Developer Products Division Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Cilk Plus – Sample

98

matrix_transpose()

 cilk_for() // outer loop data independent

 for() sum_squarroot() // identified as hotspot

 for()

 for() sqrt()

 for()

 for() subtract_squareroot()

Software & Services Group

Developer Products Division Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Cilk Plus – Sample

99

matrix_transpose()

 cilk_for() // outer loop data independent

 for() sum_squarroot() // identified as hotspot

 for()

 x[0:size] += sqrt () // replaced with array notation

 for()

 for() subtract_squareroot()

Software & Services Group

Developer Products Division Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Cilk Plus – Sample

100

matrix_transpose()

 cilk_for() // replaced with cilk_for

 for() sum_squarroot()

 for()

 x[0:size] += sqrt () // replaced with array notation

 for()

 for() __declspec(vector)subtract_squareroot()

 // added elemental function

Software & Services Group

Developer Products Division Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Cilk Plus – Sample
cilk_spawn

101

int fib(int n)

{

 int x, y;

 if (n < 2) return n;

 x = cilk_spawn fib(n-1);

 y = fib(n-2); // Execution can continue while
 // fib(n-1) is running)

 cilk_sync; // Asynchronous call must
 //complete before using x.

 return x+y;

}

Software & Services Group

Developer Products Division Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Cilk Plus – Sample
Hyperobjekt

102

int result = 0;
 for (std::size_t i = 0; i < n; ++i)
 {
 result += compute(myArray[i]);
 }
 std::cout << "The result is: " << result << std::endl;

Software & Services Group

Developer Products Division Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Cilk Plus – Sample
Hyperobjekt

103

int result = 0;
 cilk_for (std::size_t i = 0; i < n; ++i)
 {
 result += compute(myArray[i]); // data race!!!
 }
 std::cout << "The result is: " << result << std::endl;

Software & Services Group

Developer Products Division Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Cilk Plus – Sample
Hyperobjekt

104

cilk::reducer_opadd<int> result;
 cilk_for (std::size_t i = 0; i < ARRAY_SIZE; ++i)
 {
 result += compute(myArray[i]); // reducer hyperobject
 // avoids race
 }
 std::cout << "The result is: "
 << result.get_value() //value extracted
 << std::endl;

Software & Services Group

Developer Products Division Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

References and Contact Information

• Intel® Cilk™ Plus
– www.cilk.com

– http://software.intel.com/en-us/intel-cilk-plus

– http://software.intel.com/en-us/forums/intel-cilk-plus/

• Intel® Threading Building Blocks
– https://www.threadingbuildingblocks.org/

– http://software.intel.com/en-us/intel-tbb

– http://software.intel.com/en-us/forums/intel-threading-building-blocks

• Parallel Programming Basics

– http://software.intel.com/en-us/courseware-parallel-
programming-basics

105

http://www.cilk.com/
http://software.intel.com/en-us/intel-tbb
http://software.intel.com/en-us/intel-tbb
http://software.intel.com/en-us/intel-tbb
http://software.intel.com/en-us/intel-tbb
http://software.intel.com/en-us/intel-tbb
http://software.intel.com/en-us/intel-tbb
http://software.intel.com/en-us/intel-tbb

Software & Services Group

Developer Products Division Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Intel® Threading Building Blocks (TBB)
Extens C++ for Parallelism

• A kind of „STL for Parallel C++ Programming“

• You specify tasks (that can run concurrently)
instead of threads
– Library maps user-defined logical tasks onto physical

threads, efficiently using cache and balancing load

– Full support for nested parallelism

• Targets threading for scalable performance
– Portable across Linux*, Mac OS*, Windows*, and Solaris*

• Compatible with other threading packages
– Can be used in concert with native threads and OpenMP*

 Flexible, scalable solution with high amount of control at
minimum overhead

106

Software & Services Group

Developer Products Division Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners. 107

What’s New: Intel® Threading Building Blocks 4.0
Commercially Supported Code using Intel® TBB Scales Exceptionally
Well

• Flow Graph
– API Extends applicability of Intel®

TBB to event-driven/reactive
programming models

• Concurrent Unordered Set
– Thread-safe container to store and

access user objects

• Memory Pools
– Enables greater flexibility and

performance by getting thread-safe
and scalable object allocation

• Generic GCC* Atomics Support
– Library portability enables

development of Intel® TBB-based
solutions on a broader range of
platforms

• Improved Interoperability
– Arbitrary nesting in Intel® PBB

components enabling Intel® Cilk™
Plus users to take advantage of
composability

Software & Services Group

Developer Products Division Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

What is TBB product wise ?

• Intel Threading Building Blocks (Intel TBB) is a
production C++ library that simplifies threading
for performance.

• Not a new language or extension; works with off-
the-shelf C++ compilers.

• Proven to be portable to new compilers, operating
systems, and architectures.

• Available as commercial and an open-source
version - GPLv2 (plus runtime exception)

 http://threadingbuildingblocks.org

108

Software & Services Group

Developer Products Division Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Concurrent Containers

Common idioms for concurrent access

- a scalable alternative serial container

with a lock around it

Miscellaneous
Thread-safe timers

Generic Parallel Algorithms

Efficient scalable way to exploit the power

of multi-core without having to start

from scratch

Task scheduler

The engine that empowers parallel

algorithms that employs task-stealing

to maximize concurrency
Synchronization Primitives

User-level and OS wrappers for

mutual exclusion, ranging from atomic

operations to several flavors of

mutexes and condition variables

Memory Allocation

Per-thread scalable memory manager and false-sharing free allocators

Intel® Threading Building Blocks

Threads

OS API wrappers

Thread Local Storage

Scalable implementation of thread-local

data that supports infinite number of TLS

TBB Graph – New!

109

Software & Services Group

Developer Products Division Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Generic Parallel Algorithms

Loop parallelization

parallel_for

parallel_reduce

- load balanced parallel execution

- fixed number of independent iterations

parallel_scan

- computes parallel prefix

 y[i] = y[i-1] op x[i]

Parallel Algorithms for Streams

parallel_do

- Use for unstructured stream or pile of work

- Can add additional work to pile while running

parallel_for_each

- parallel_do without an additional work feeder

pipeline / parallel_pipeline

- Linear pipeline of stages

- Each stage can be parallel or serial in-order
or serial out-of-order.

- Uses cache efficiently

Parallel function invocation

parallel_invoke

- Parallel execution of a number of
user-specified functions

Parallel sorting

parallel_sort

Computational graph

flow::graph

- Implements dependencies between
tasks

- Pass messages between tasks

110

Software & Services Group

Developer Products Division Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

parallel_for usage example

#include "tbb/blocked_range.h"

#include "tbb/parallel_for.h“

using namespace tbb;

class ChangeArray{

 int* array;

public:

 ChangeArray (int* a): array(a) {}

 void operator()(const blocked_range<int>& r) const{

 for (int i=r.begin(); i!=r.end(); i++){

 Foo (array[i]);

 }

 }

};

int main (){

 int a[n];

 // initialize array here…

 parallel_for (blocked_range<int>(0, n), ChangeArray(a));

return 0;

}

ChangeArray class defines

a for-loop body for parallel_for

blocked_range – TBB template

representing 1D iteration space

As usual with C++ function

objects the main work

is done inside operator()

A call to a template function

parallel_for<Range, Body>:

with arguments

Range  blocked_range

Body  ChangeArray

111

Software & Services Group

Developer Products Division Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

C++ 11 Lambda Expression Support

parallel_for example will transform into:

#include "tbb/blocked_range.h"

#include "tbb/parallel_for.h“

using namespace tbb;

int main (){
 int a[n];
 // initialize array here…

 parallel_for (0, n, 1,
 [=](int i) {
 Foo (a[i]);
 });
 return 0;
}

Capture variables by value

from surrounding scope to

completely mimic the non-lambda

implementation. Note that [&]

could be used to capture

variables by reference .

Using lambda expressions implement

MyBody::operator() right inside

the call to parallel_for().

parallel_for has an overload that takes

start, stop and step argument and

constructs blocked_range internally

112

• auto_partitioner is used by default for all parallel
algorithms (need to really focus on
simple_partitioner if required

• explicit task_scheduler_init optional

Software & Services Group

Developer Products Division Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

parallel_pipeline

float RootMeanSquare(float* first, float* last) {
 float sum=0;
 parallel_pipeline(/*max_number_of_tokens=*/16,
 make_filter<void,float*>(
 filter::serial,
 [&](flow_control& fc)->float*{
 if(first<last) {
 return first++;
 } else {
 fc.stop(); // stop processing
 return NULL;
 }
 }
) &
 make_filter<float*,float>(
 filter::parallel,
 [](float* p) ->float* {return (*p)*(*p);}
) &
 make_filter<float,void>(
 filter::serial,
 [&sum](float x) {sum+=x;}
)
);
 // sum=first2+(first+1)2 + … +(last-1)2 computed in parallel
 return sqrt(sum);
}

Call function tbb::parallel_pipeline

to run pipeline stages (filters)

Create pipeline stage object

tbb::make_filter<InputDataType,

 OutputDataType>(mode, body)

Pipeline stage mode can be serial,

parallel, serial_in_order, or

serial_out_of_order

get new float

float*float

sum+=float2

input: void

output: float*

input: float*

output: float

input: float

output: void

113

Software & Services Group

Developer Products Division Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Concurrent Containers

• Intel® TBB provides highly concurrent containers

– STL containers are not concurrency-friendly: attempt to
modify them concurrently can corrupt container

– Wrapping a lock around an STL container turns it into a
serial bottleneck and still does not always guarantee thread
safety

– STL containers are inherently not thread-safe

• Intel TBB provides fine-grained locking or lockless
implementations

– Worse single-thread performance, but better scalability.

– Can be used with the library, OpenMP*, or native threads.

*Other names and brands may be claimed as the property of others

114

Software & Services Group

Developer Products Division Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Concurrent Containers Key Features

– concurrent_hash_map <Key, T, HashCompare, Allocator>
–Models hash table of std::pair <const Key, T> elements
–Maps Key to element of type T
–User defines HashCompare to specify how keys are hashed and compared
–tbb_allocator is a default allocator

– concurrent_vector <T, Allocator>
–Dynamically growable array of T: grow_by and grow_to_atleast
–cache_aligned_allocator is a default allocator

– concurrent_queue <T, Allocator>
–For single threaded run concurrent_queue supports regular “first-in-first-

out” ordering
–If one thread pushes two values and the other thread pops those two

values they will come out in the order as they were pushed
–cache_aligned_allocator is a default allocator

– concurrent_bounded_queue <T, Allocator>
–Similar to concurrent_queue with a difference that it allows specifying

capacity. Once the capacity is reached ‘push’ will wait until other
elements will be popped before it can continue.

115

Software & Services Group

Developer Products Division Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Example: concurrent_hash_map

struct wordsCompare {
 bool equal(const string& w1, const string& w2) const {
 return w1 == w2;
 }
 size_t hash(const string& w) const {
 size_t h = 0; for(const char* s = w.c_str(); *s; s++) h = (h*16777179)^*s;
 return h;
 }
};

void ParallelWordsCounting(const text_t& text) {

 parallel_for(blocked_range<size_t>(0, text.size()),
 [&text](const blocked_range<int> &r) {
 for(int i = r.begin(); i < r.end(); ++i) {
 concurrent_hash_map<string, int, wordsCompare>::accessor acc;
 wordCounters.insert(acc, text[i]);
 acc->second++;
 }
 });
}

User-defined “HashCompare”

class needs to implement functions

for comparing two keys and

a hashing function

an element of a concurrent_hash_map

can be accessed by creating an “accessor”

object, which is somewhat a smart

pointer implementing the necessary

data access synchronization

116

Software & Services Group

Developer Products Division Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Synchronization Primitives Features

• Atomic Operations.

– High-level abstractions

• Exception-safe Locks

– spin_mutex is VERY FAST in lightly contended
situations; use it if you need to protect very few
instructions

– Use queuing_rw_mutex when scalability and fairness
are important

– Use recursive_mutex when your threading model
requires that one thread can re-acquire a lock. All locks
should be released by one thread for another one to get
a lock.

– Use reader-writer mutex to allow non-blocking read for
multiple threads

117

Software & Services Group

Developer Products Division Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Example: spin_rw_mutex

•If exception occurs within the protected code block destructor will
automatically release the lock if it’s acquired avoiding a dead-lock

•Any reader lock may be upgraded to writer lock; upgrade_to_writer
indicates whether the lock had to be released before it was upgraded

#include “tbb/spin_rw_mutex.h”

using namespace tbb;

spin_rw_mutex MyMutex;

int foo (){

 // Construction of ‘lock’ acquires ‘MyMutex’

 spin_rw_mutex::scoped_lock lock (MyMutex, /*is_writer*/ false);

 …

 if (!lock.upgrade_to_writer ()) { … }

 else { … }

 return 0;

 // Destructor of ‘lock’ releases ‘MyMutex’

}

118

Software & Services Group

Developer Products Division Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Example: atomic operation

#include "tbb/blocked_range.h"

#include "tbb/parallel_for.h“

using namespace tbb;

atomic<int> sum;

int main (){
 int a[n];
 // initialize array here…

 parallel_for (0, n, 1,
 [=](int i) {
 Foo (a[i]);
 sum += a[i];
 });
return 0;
}

This operation is performed atomically

119

Software & Services Group

Developer Products Division Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Scalable Memory Allocation

• Problem
– Memory allocation is a bottle-neck in concurrent

environment
– Threads have to acquire a global lock to allocate/deallocate memory

from the global heap

• Solution
– Intel® Threading Building Blocks provides tested, tuned,

and scalable memory allocator based on per-thread
memory management algorithm

– Scalable memory allocator has simple interface that can be
used:

– As an allocator argument to STL template classes

– As a replacement for malloc/realloc/free calls (C programs)

– As a replacement for global new and delete operators (C++
programs)

– tbb_allocator automatically searches for scalable_allocator
and uses it, if found. Otherwise it uses plain allocator.

120

Software & Services Group

Developer Products Division Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Automatic malloc replacement

• On Windows and Linux operating systems it is
possible to automatically replace calls to memory
allocating functionality with corresponding Intel®
TBB function calls;

• This is done by the use of malloc_proxy libraries:

– Linux: libtbbmalloc_proxy.so.2 and
libtbbmalloc_proxy_debug.so.2

– Windows:tbbmalloc_proxy.dll and
tbbmalloc_debug_proxy.dll

121

Software & Services Group

Developer Products Division Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Intel® TBB Class Graph: Motivation

122

• Many applications can be naturally implemented
as computational graphs

• Intel® TBB class graph allows to:
– Implement dependencies between tasks
– Pass messages between tasks

• Intel TBB class graph extends applicability of
Intel® Parallel Building Blocks to reactive/event-
driven parallel models

Message Passing

Fork-join / Tasking

SIMD / Vector

Multi-core enabled application

Intel TBB

Intel® Cilk™ Plus, Intel
TBB

Intel Cilk Plus, Intel®
ArBB

Intel® Parallel Building Blocks

Software & Services Group

Developer Products Division Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Intel® TBB class graph: Components

123

• Graph object
– Contains a pointer to the root

task
– Owns tasks created on behalf of

the graph
– Users can wait for the

completion of all tasks of the
graph

• Graph nodes
– Implement sender and/or

receiver interfaces
– Nodes manage messages and/or

execute function objects

• Edges
– Connect predecessors to

successors

Graph object

Vertex

Edge

Software & Services Group

Developer Products Division Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Example: simple dependency graph

124

#include <cstdio>
#define TBB_PREVIEW_GRAPH 1
#include "tbb/flow_graph.h"
using namespace tbb::flow;
struct body {

std::string my_name;
body(const char *name) : my_name(name) {}
void operator()(continue_msg) const {
 printf("%s\n", my_name.c_str());

 }
};
int main() {

graph g; // graph object
broadcast_node< continue_msg > start; // create vertexes
continue_node<continue_msg> a(g, body("A"));
continue_node<continue_msg> b(g, body("B"));
continue_node<continue_msg> c(g, body("C"));
make_edge(start, a); // connect vertexes
make_edge(start, b);
make_edge(a, c);
make_edge(b, c);

start.try_put(continue_msg()); // start graph execution
g.wait_for_all(); // wait for all task completion

return 0;

}

start

A B

C

Event

124

Software & Services Group

Developer Products Division Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Building A Simple Message Graph

125

• Model: Tasks A and B start simultaneously
and process input item T, task C executes
after tasks A and B have finished and
processes outputs of A and B

• Tools:
– “start” node: tbb::broadcast_node<T>

– Accepts messages of type T and sends them to
all accepting successors

– A, B, C nodes: tbb::function_node<T,U>
– Accepts messages of type T
– Executes function object
– Messages of type U returned by a function object

are sent to all accepting successors

– bufferA, bufferB: tbb::buffer_node<T>
– Buffers all incoming messages of type T and

sends to 1 successor if possible

– “join” node: tbb::join_node<T0, T1,…>
– Attempts to reserve predecessors; if successful

outputs tuple, else releases

A B

C

join

B
u

ff
e
r
A

B
u

ff
e
r
B

start

Software & Services Group

Developer Products Division Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Example: Simple Message Graph

126

Intel Confidential

tbb::graph g;

tbb::broadcast_node<int> start;
tbb::function_node<int, int> A(g, tbb::graph::serial, [](int x)->int {
 std::cout << "A" << std::endl;
 return x*x;
});
tbb::function_node<int, int> B(g, tbb::graph::serial, [](int x)->int {
 std::cout << "B" << std::endl;
 return x*x*x;
});
tbb::function_node<std::tuple<int,int>, int> C(g, tbb::graph::serial, [](std::tuple<int,int> t)->int {
 std::cout << "C" << std::endl;
 return t.get<0>()+t.get<1>();
});

tbb::buffer_node<int> bufferA(g);
tbb::buffer_node<int> bufferB(g);
tbb::join_node<int, int> join(g);

tbb::make_edge(start, A);
tbb::make_edge(start, B);
tbb::make_edge(A, bufferA);
tbb::make_edge(B, bufferB);
tbb::make_edge(bufferA, join.inputs(). get<0>());
tbb::make_edge(bufferB, join.inputs(). get<1>());
tbb::make_edge(join, C);

start.try_put(12);
g.wait_for_all();

A B

C

join

B
u

ff
e
r
A

B
u

ff
e
r
B

start

Software & Services Group

Developer Products Division Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Summary

127

• Class graph enables new usage models in Intel®
Threading Building Blocks
– Task dependencies and message passing
– Event-driven programming

• Available now as a community preview feature
– We are accepting feedback from users

Software & Services Group

Developer Products Division Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Feature name Community
preview feature

Official
feature

Flow graph ●

Scalable Memory Pools ●

Serial parallel_for ●

concurrent_priority_queue ●

TBB runtime loader ●

parallel_deterministic_reduce ●

Task priorities ●

TBB 4.0 recent features

128

Software & Services Group

Developer Products Division Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Recommendations

129

• Use parallel_pipeline when possible
– Pipelines can be implemented via Intel® TBB graph but

parallel_pipeline does it naturally and might work slightly
faster

• Use Intel TBB graph for DAGs
– The class task has API that supports DAGs, but with graph

the implementation is more intuitive and elegant

Software & Services Group

Developer Products Division Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Mandelbrot in Intel® TBB

parallel_for(blocked_range<int>(0, max_row),
 [&](blocked_range<int> r> {
 for (size_t i=r.begin(); i!= r.end();++i)
 for (int j = 0; j < max_col; j++)
 p[i][j]=mandel(Complex(scale(i),scale(j)),depth);
});

int mandel(Complex c, int max_count) {
 int count = 0; Complex z = 0;
 for (int i = 0; i < max_count; i++) {
 if (abs(z) >= 2.0) break;
 z = z*z + c; count++;
 }
 return count;
} Parallel algorithm

Use new C++ lambda functions to define function object in-line

Intel® Threading Building Block uses C++ generics to provide
 parallel algorithms to the programmer

Task is a function object.

130

Software & Services Group

Developer Products Division Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

TBB – Sample
Parallel construct

131

main()

 GenerateData()

 sort()

 ComparePeopleByAges()

 CountNames()

 for()

 ValidateCounts()

 for()

Software & Services Group

Developer Products Division Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

TBB – Sample
Parallel construct

132

main()

 GenerateData()

 sort()

 ComparePeopleByAges()

 CountNames()

 CriticalSection

 parallel_for() // parallel_for TBB template using lambda

 ValidateCounts()

 parallel_for() // parallel_for TBB template using lambda

Software & Services Group

Developer Products Division Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

TBB – Sample
STL replacment

133

main()

 GenerateData()

 parallel_sort() // STL replacment with threaded TBB template

 ComparePeopleByAges()

 CountNames()

 CriticalSection

 parallel_for() // parallel_for TBB template using lambda

 ValidateCounts()

 parallel_for() // parallel_for TBB template using lambda

Software & Services Group

Developer Products Division Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

TBB – Sample
Scalable Memory Allocator

134

main()

tbb_allocator() // scalable memory allocator replacing
 // std::allocator()

 GenerateData()

 parallel_sort() // STL replacment with threaded TBB template

 ComparePeopleByAges()

 CountNames()

 CriticalSection

 parallel_for() // parallel_for TBB template using lambda

 ValidateCounts()

 parallel_for() // parallel_for TBB template using lambda

Software & Services Group

Developer Products Division Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

TBB – Sample
Concurrent Container

135

main()

tbb_allocator()

concurrent_unordered_map<MyString, atomic<int>>

 // concurrent container, atomic operation on var

 GenerateData()

 parallel_sort() // STL replacment with threaded TBB template

 ComparePeopleByAges()

 CountNames()

 parallel_for() // parallel_for TBB template using lambda

 ValidateCounts()

 parallel_for() // parallel_for TBB template using lambda

Software & Services Group

Developer Products Division Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Mandelbrot in Intel® TBB

parallel_for(blocked_range<int>(0, max_row),
 [&](blocked_range<int> r> {
 for (size_t i=r.begin(); i!= r.end();++i)
 for (int j = 0; j < max_col; j++)
 p[i][j]=mandel(Complex(scale(i),scale(j)),depth);
});

int mandel(Complex c, int max_count) {
 int count = 0; Complex z = 0;
 for (int i = 0; i < max_count; i++) {
 if (abs(z) >= 2.0) break;
 z = z*z + c; count++;
 }
 return count;
} Parallel algorithm

Use new C++ lambda functions to define function object in-line

Intel® Threading Building Block uses C++ generics to provide
 parallel algorithms to the programmer

Task is a function object.

136

Software & Services Group

Developer Products Division Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

What is TBB product wise ?

• Intel Threading Building Blocks (Intel TBB) is
a production C++ library that simplifies threading
for performance.

• Not a new language or extension; works with off-
the-shelf C++ compilers.

• Proven to be portable to new compilers,
operating systems, and architectures.

• Available as commercial and an open-source
version - GPLv2 (plus runtime exception)

 http://threadingbuildingblocks.org

137

Software & Services Group

Developer Products Division Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

TBB Resources
New Features

Task priorities
– http://software.intel.com/en-us/blogs/2011/04/01/task-and-task-

group-priorities-in-tbb/

Graph (now called tbb::flow_graph)

– http://software.intel.com/en-us/blogs/2011/03/31/the-join-node-in-
the-intel-threading-building-blocks-graph-community-preview-
feature-2/

– http://software.intel.com/en-us/blogs/2011/01/10/using-the-intel-
threading-building-blocks-graph-community-preview-feature-an-
implementation-of-dining-philosophers/

– http://software.intel.com/en-us/blogs/2010/12/27/using-the-intel-
threading-building-blocks-graph-community-preview-feature-
creating-a-simple-dependency-graph/

– http://software.intel.com/en-us/blogs/2011/01/03/using-the-intel-
threading-building-blocks-graph-community-preview-feature-
creating-a-simple-message-graph/

– http://software.intel.com/en-us/blogs/2010/12/23/intel-threading-
building-blocks-version-30-update-5-introduces-graph-as-a-
community-preview-feature-2/

138

http://software.intel.com/en-us/blogs/2011/04/01/task-and-task-group-priorities-in-tbb/
http://software.intel.com/en-us/blogs/2011/04/01/task-and-task-group-priorities-in-tbb/
http://software.intel.com/en-us/blogs/2011/04/01/task-and-task-group-priorities-in-tbb/
http://software.intel.com/en-us/blogs/2011/04/01/task-and-task-group-priorities-in-tbb/
http://software.intel.com/en-us/blogs/2011/04/01/task-and-task-group-priorities-in-tbb/
http://software.intel.com/en-us/blogs/2011/04/01/task-and-task-group-priorities-in-tbb/
http://software.intel.com/en-us/blogs/2011/04/01/task-and-task-group-priorities-in-tbb/
http://software.intel.com/en-us/blogs/2011/04/01/task-and-task-group-priorities-in-tbb/
http://software.intel.com/en-us/blogs/2011/04/01/task-and-task-group-priorities-in-tbb/
http://software.intel.com/en-us/blogs/2011/04/01/task-and-task-group-priorities-in-tbb/
http://software.intel.com/en-us/blogs/2011/04/01/task-and-task-group-priorities-in-tbb/
http://software.intel.com/en-us/blogs/2011/04/01/task-and-task-group-priorities-in-tbb/
http://software.intel.com/en-us/blogs/2011/04/01/task-and-task-group-priorities-in-tbb/
http://software.intel.com/en-us/blogs/2011/04/01/task-and-task-group-priorities-in-tbb/
http://software.intel.com/en-us/blogs/2011/04/01/task-and-task-group-priorities-in-tbb/
http://software.intel.com/en-us/blogs/2011/03/31/the-join-node-in-the-intel-threading-building-blocks-graph-community-preview-feature-2/
http://software.intel.com/en-us/blogs/2011/03/31/the-join-node-in-the-intel-threading-building-blocks-graph-community-preview-feature-2/
http://software.intel.com/en-us/blogs/2011/03/31/the-join-node-in-the-intel-threading-building-blocks-graph-community-preview-feature-2/
http://software.intel.com/en-us/blogs/2011/03/31/the-join-node-in-the-intel-threading-building-blocks-graph-community-preview-feature-2/
http://software.intel.com/en-us/blogs/2011/03/31/the-join-node-in-the-intel-threading-building-blocks-graph-community-preview-feature-2/
http://software.intel.com/en-us/blogs/2011/03/31/the-join-node-in-the-intel-threading-building-blocks-graph-community-preview-feature-2/
http://software.intel.com/en-us/blogs/2011/03/31/the-join-node-in-the-intel-threading-building-blocks-graph-community-preview-feature-2/
http://software.intel.com/en-us/blogs/2011/03/31/the-join-node-in-the-intel-threading-building-blocks-graph-community-preview-feature-2/
http://software.intel.com/en-us/blogs/2011/03/31/the-join-node-in-the-intel-threading-building-blocks-graph-community-preview-feature-2/
http://software.intel.com/en-us/blogs/2011/03/31/the-join-node-in-the-intel-threading-building-blocks-graph-community-preview-feature-2/
http://software.intel.com/en-us/blogs/2011/03/31/the-join-node-in-the-intel-threading-building-blocks-graph-community-preview-feature-2/
http://software.intel.com/en-us/blogs/2011/03/31/the-join-node-in-the-intel-threading-building-blocks-graph-community-preview-feature-2/
http://software.intel.com/en-us/blogs/2011/03/31/the-join-node-in-the-intel-threading-building-blocks-graph-community-preview-feature-2/
http://software.intel.com/en-us/blogs/2011/03/31/the-join-node-in-the-intel-threading-building-blocks-graph-community-preview-feature-2/
http://software.intel.com/en-us/blogs/2011/03/31/the-join-node-in-the-intel-threading-building-blocks-graph-community-preview-feature-2/
http://software.intel.com/en-us/blogs/2011/03/31/the-join-node-in-the-intel-threading-building-blocks-graph-community-preview-feature-2/
http://software.intel.com/en-us/blogs/2011/03/31/the-join-node-in-the-intel-threading-building-blocks-graph-community-preview-feature-2/
http://software.intel.com/en-us/blogs/2011/03/31/the-join-node-in-the-intel-threading-building-blocks-graph-community-preview-feature-2/
http://software.intel.com/en-us/blogs/2011/03/31/the-join-node-in-the-intel-threading-building-blocks-graph-community-preview-feature-2/
http://software.intel.com/en-us/blogs/2011/03/31/the-join-node-in-the-intel-threading-building-blocks-graph-community-preview-feature-2/
http://software.intel.com/en-us/blogs/2011/03/31/the-join-node-in-the-intel-threading-building-blocks-graph-community-preview-feature-2/
http://software.intel.com/en-us/blogs/2011/03/31/the-join-node-in-the-intel-threading-building-blocks-graph-community-preview-feature-2/
http://software.intel.com/en-us/blogs/2011/03/31/the-join-node-in-the-intel-threading-building-blocks-graph-community-preview-feature-2/
http://software.intel.com/en-us/blogs/2011/03/31/the-join-node-in-the-intel-threading-building-blocks-graph-community-preview-feature-2/
http://software.intel.com/en-us/blogs/2011/03/31/the-join-node-in-the-intel-threading-building-blocks-graph-community-preview-feature-2/
http://software.intel.com/en-us/blogs/2011/03/31/the-join-node-in-the-intel-threading-building-blocks-graph-community-preview-feature-2/
http://software.intel.com/en-us/blogs/2011/03/31/the-join-node-in-the-intel-threading-building-blocks-graph-community-preview-feature-2/
http://software.intel.com/en-us/blogs/2011/03/31/the-join-node-in-the-intel-threading-building-blocks-graph-community-preview-feature-2/
http://software.intel.com/en-us/blogs/2011/03/31/the-join-node-in-the-intel-threading-building-blocks-graph-community-preview-feature-2/
http://software.intel.com/en-us/blogs/2011/01/10/using-the-intel-threading-building-blocks-graph-community-preview-feature-an-implementation-of-dining-philosophers/
http://software.intel.com/en-us/blogs/2011/01/10/using-the-intel-threading-building-blocks-graph-community-preview-feature-an-implementation-of-dining-philosophers/
http://software.intel.com/en-us/blogs/2011/01/10/using-the-intel-threading-building-blocks-graph-community-preview-feature-an-implementation-of-dining-philosophers/
http://software.intel.com/en-us/blogs/2011/01/10/using-the-intel-threading-building-blocks-graph-community-preview-feature-an-implementation-of-dining-philosophers/
http://software.intel.com/en-us/blogs/2011/01/10/using-the-intel-threading-building-blocks-graph-community-preview-feature-an-implementation-of-dining-philosophers/
http://software.intel.com/en-us/blogs/2011/01/10/using-the-intel-threading-building-blocks-graph-community-preview-feature-an-implementation-of-dining-philosophers/
http://software.intel.com/en-us/blogs/2011/01/10/using-the-intel-threading-building-blocks-graph-community-preview-feature-an-implementation-of-dining-philosophers/
http://software.intel.com/en-us/blogs/2011/01/10/using-the-intel-threading-building-blocks-graph-community-preview-feature-an-implementation-of-dining-philosophers/
http://software.intel.com/en-us/blogs/2011/01/10/using-the-intel-threading-building-blocks-graph-community-preview-feature-an-implementation-of-dining-philosophers/
http://software.intel.com/en-us/blogs/2011/01/10/using-the-intel-threading-building-blocks-graph-community-preview-feature-an-implementation-of-dining-philosophers/
http://software.intel.com/en-us/blogs/2011/01/10/using-the-intel-threading-building-blocks-graph-community-preview-feature-an-implementation-of-dining-philosophers/
http://software.intel.com/en-us/blogs/2011/01/10/using-the-intel-threading-building-blocks-graph-community-preview-feature-an-implementation-of-dining-philosophers/
http://software.intel.com/en-us/blogs/2011/01/10/using-the-intel-threading-building-blocks-graph-community-preview-feature-an-implementation-of-dining-philosophers/
http://software.intel.com/en-us/blogs/2011/01/10/using-the-intel-threading-building-blocks-graph-community-preview-feature-an-implementation-of-dining-philosophers/
http://software.intel.com/en-us/blogs/2011/01/10/using-the-intel-threading-building-blocks-graph-community-preview-feature-an-implementation-of-dining-philosophers/
http://software.intel.com/en-us/blogs/2011/01/10/using-the-intel-threading-building-blocks-graph-community-preview-feature-an-implementation-of-dining-philosophers/
http://software.intel.com/en-us/blogs/2011/01/10/using-the-intel-threading-building-blocks-graph-community-preview-feature-an-implementation-of-dining-philosophers/
http://software.intel.com/en-us/blogs/2011/01/10/using-the-intel-threading-building-blocks-graph-community-preview-feature-an-implementation-of-dining-philosophers/
http://software.intel.com/en-us/blogs/2011/01/10/using-the-intel-threading-building-blocks-graph-community-preview-feature-an-implementation-of-dining-philosophers/
http://software.intel.com/en-us/blogs/2011/01/10/using-the-intel-threading-building-blocks-graph-community-preview-feature-an-implementation-of-dining-philosophers/
http://software.intel.com/en-us/blogs/2011/01/10/using-the-intel-threading-building-blocks-graph-community-preview-feature-an-implementation-of-dining-philosophers/
http://software.intel.com/en-us/blogs/2011/01/10/using-the-intel-threading-building-blocks-graph-community-preview-feature-an-implementation-of-dining-philosophers/
http://software.intel.com/en-us/blogs/2011/01/10/using-the-intel-threading-building-blocks-graph-community-preview-feature-an-implementation-of-dining-philosophers/
http://software.intel.com/en-us/blogs/2011/01/10/using-the-intel-threading-building-blocks-graph-community-preview-feature-an-implementation-of-dining-philosophers/
http://software.intel.com/en-us/blogs/2011/01/10/using-the-intel-threading-building-blocks-graph-community-preview-feature-an-implementation-of-dining-philosophers/
http://software.intel.com/en-us/blogs/2011/01/10/using-the-intel-threading-building-blocks-graph-community-preview-feature-an-implementation-of-dining-philosophers/
http://software.intel.com/en-us/blogs/2011/01/10/using-the-intel-threading-building-blocks-graph-community-preview-feature-an-implementation-of-dining-philosophers/
http://software.intel.com/en-us/blogs/2011/01/10/using-the-intel-threading-building-blocks-graph-community-preview-feature-an-implementation-of-dining-philosophers/
http://software.intel.com/en-us/blogs/2011/01/10/using-the-intel-threading-building-blocks-graph-community-preview-feature-an-implementation-of-dining-philosophers/
http://software.intel.com/en-us/blogs/2011/01/10/using-the-intel-threading-building-blocks-graph-community-preview-feature-an-implementation-of-dining-philosophers/
http://software.intel.com/en-us/blogs/2011/01/10/using-the-intel-threading-building-blocks-graph-community-preview-feature-an-implementation-of-dining-philosophers/
http://software.intel.com/en-us/blogs/2010/12/27/using-the-intel-threading-building-blocks-graph-community-preview-feature-creating-a-simple-dependency-graph/
http://software.intel.com/en-us/blogs/2010/12/27/using-the-intel-threading-building-blocks-graph-community-preview-feature-creating-a-simple-dependency-graph/
http://software.intel.com/en-us/blogs/2010/12/27/using-the-intel-threading-building-blocks-graph-community-preview-feature-creating-a-simple-dependency-graph/
http://software.intel.com/en-us/blogs/2010/12/27/using-the-intel-threading-building-blocks-graph-community-preview-feature-creating-a-simple-dependency-graph/
http://software.intel.com/en-us/blogs/2010/12/27/using-the-intel-threading-building-blocks-graph-community-preview-feature-creating-a-simple-dependency-graph/
http://software.intel.com/en-us/blogs/2010/12/27/using-the-intel-threading-building-blocks-graph-community-preview-feature-creating-a-simple-dependency-graph/
http://software.intel.com/en-us/blogs/2010/12/27/using-the-intel-threading-building-blocks-graph-community-preview-feature-creating-a-simple-dependency-graph/
http://software.intel.com/en-us/blogs/2010/12/27/using-the-intel-threading-building-blocks-graph-community-preview-feature-creating-a-simple-dependency-graph/
http://software.intel.com/en-us/blogs/2010/12/27/using-the-intel-threading-building-blocks-graph-community-preview-feature-creating-a-simple-dependency-graph/
http://software.intel.com/en-us/blogs/2010/12/27/using-the-intel-threading-building-blocks-graph-community-preview-feature-creating-a-simple-dependency-graph/
http://software.intel.com/en-us/blogs/2010/12/27/using-the-intel-threading-building-blocks-graph-community-preview-feature-creating-a-simple-dependency-graph/
http://software.intel.com/en-us/blogs/2010/12/27/using-the-intel-threading-building-blocks-graph-community-preview-feature-creating-a-simple-dependency-graph/
http://software.intel.com/en-us/blogs/2010/12/27/using-the-intel-threading-building-blocks-graph-community-preview-feature-creating-a-simple-dependency-graph/
http://software.intel.com/en-us/blogs/2010/12/27/using-the-intel-threading-building-blocks-graph-community-preview-feature-creating-a-simple-dependency-graph/
http://software.intel.com/en-us/blogs/2010/12/27/using-the-intel-threading-building-blocks-graph-community-preview-feature-creating-a-simple-dependency-graph/
http://software.intel.com/en-us/blogs/2010/12/27/using-the-intel-threading-building-blocks-graph-community-preview-feature-creating-a-simple-dependency-graph/
http://software.intel.com/en-us/blogs/2010/12/27/using-the-intel-threading-building-blocks-graph-community-preview-feature-creating-a-simple-dependency-graph/
http://software.intel.com/en-us/blogs/2010/12/27/using-the-intel-threading-building-blocks-graph-community-preview-feature-creating-a-simple-dependency-graph/
http://software.intel.com/en-us/blogs/2010/12/27/using-the-intel-threading-building-blocks-graph-community-preview-feature-creating-a-simple-dependency-graph/
http://software.intel.com/en-us/blogs/2010/12/27/using-the-intel-threading-building-blocks-graph-community-preview-feature-creating-a-simple-dependency-graph/
http://software.intel.com/en-us/blogs/2010/12/27/using-the-intel-threading-building-blocks-graph-community-preview-feature-creating-a-simple-dependency-graph/
http://software.intel.com/en-us/blogs/2010/12/27/using-the-intel-threading-building-blocks-graph-community-preview-feature-creating-a-simple-dependency-graph/
http://software.intel.com/en-us/blogs/2010/12/27/using-the-intel-threading-building-blocks-graph-community-preview-feature-creating-a-simple-dependency-graph/
http://software.intel.com/en-us/blogs/2010/12/27/using-the-intel-threading-building-blocks-graph-community-preview-feature-creating-a-simple-dependency-graph/
http://software.intel.com/en-us/blogs/2010/12/27/using-the-intel-threading-building-blocks-graph-community-preview-feature-creating-a-simple-dependency-graph/
http://software.intel.com/en-us/blogs/2010/12/27/using-the-intel-threading-building-blocks-graph-community-preview-feature-creating-a-simple-dependency-graph/
http://software.intel.com/en-us/blogs/2010/12/27/using-the-intel-threading-building-blocks-graph-community-preview-feature-creating-a-simple-dependency-graph/
http://software.intel.com/en-us/blogs/2010/12/27/using-the-intel-threading-building-blocks-graph-community-preview-feature-creating-a-simple-dependency-graph/
http://software.intel.com/en-us/blogs/2010/12/27/using-the-intel-threading-building-blocks-graph-community-preview-feature-creating-a-simple-dependency-graph/
http://software.intel.com/en-us/blogs/2010/12/27/using-the-intel-threading-building-blocks-graph-community-preview-feature-creating-a-simple-dependency-graph/
http://software.intel.com/en-us/blogs/2010/12/27/using-the-intel-threading-building-blocks-graph-community-preview-feature-creating-a-simple-dependency-graph/
http://software.intel.com/en-us/blogs/2011/01/03/using-the-intel-threading-building-blocks-graph-community-preview-feature-creating-a-simple-message-graph/
http://software.intel.com/en-us/blogs/2011/01/03/using-the-intel-threading-building-blocks-graph-community-preview-feature-creating-a-simple-message-graph/
http://software.intel.com/en-us/blogs/2011/01/03/using-the-intel-threading-building-blocks-graph-community-preview-feature-creating-a-simple-message-graph/
http://software.intel.com/en-us/blogs/2011/01/03/using-the-intel-threading-building-blocks-graph-community-preview-feature-creating-a-simple-message-graph/
http://software.intel.com/en-us/blogs/2011/01/03/using-the-intel-threading-building-blocks-graph-community-preview-feature-creating-a-simple-message-graph/
http://software.intel.com/en-us/blogs/2011/01/03/using-the-intel-threading-building-blocks-graph-community-preview-feature-creating-a-simple-message-graph/
http://software.intel.com/en-us/blogs/2011/01/03/using-the-intel-threading-building-blocks-graph-community-preview-feature-creating-a-simple-message-graph/
http://software.intel.com/en-us/blogs/2011/01/03/using-the-intel-threading-building-blocks-graph-community-preview-feature-creating-a-simple-message-graph/
http://software.intel.com/en-us/blogs/2011/01/03/using-the-intel-threading-building-blocks-graph-community-preview-feature-creating-a-simple-message-graph/
http://software.intel.com/en-us/blogs/2011/01/03/using-the-intel-threading-building-blocks-graph-community-preview-feature-creating-a-simple-message-graph/
http://software.intel.com/en-us/blogs/2011/01/03/using-the-intel-threading-building-blocks-graph-community-preview-feature-creating-a-simple-message-graph/
http://software.intel.com/en-us/blogs/2011/01/03/using-the-intel-threading-building-blocks-graph-community-preview-feature-creating-a-simple-message-graph/
http://software.intel.com/en-us/blogs/2011/01/03/using-the-intel-threading-building-blocks-graph-community-preview-feature-creating-a-simple-message-graph/
http://software.intel.com/en-us/blogs/2011/01/03/using-the-intel-threading-building-blocks-graph-community-preview-feature-creating-a-simple-message-graph/
http://software.intel.com/en-us/blogs/2011/01/03/using-the-intel-threading-building-blocks-graph-community-preview-feature-creating-a-simple-message-graph/
http://software.intel.com/en-us/blogs/2011/01/03/using-the-intel-threading-building-blocks-graph-community-preview-feature-creating-a-simple-message-graph/
http://software.intel.com/en-us/blogs/2011/01/03/using-the-intel-threading-building-blocks-graph-community-preview-feature-creating-a-simple-message-graph/
http://software.intel.com/en-us/blogs/2011/01/03/using-the-intel-threading-building-blocks-graph-community-preview-feature-creating-a-simple-message-graph/
http://software.intel.com/en-us/blogs/2011/01/03/using-the-intel-threading-building-blocks-graph-community-preview-feature-creating-a-simple-message-graph/
http://software.intel.com/en-us/blogs/2011/01/03/using-the-intel-threading-building-blocks-graph-community-preview-feature-creating-a-simple-message-graph/
http://software.intel.com/en-us/blogs/2011/01/03/using-the-intel-threading-building-blocks-graph-community-preview-feature-creating-a-simple-message-graph/
http://software.intel.com/en-us/blogs/2011/01/03/using-the-intel-threading-building-blocks-graph-community-preview-feature-creating-a-simple-message-graph/
http://software.intel.com/en-us/blogs/2011/01/03/using-the-intel-threading-building-blocks-graph-community-preview-feature-creating-a-simple-message-graph/
http://software.intel.com/en-us/blogs/2011/01/03/using-the-intel-threading-building-blocks-graph-community-preview-feature-creating-a-simple-message-graph/
http://software.intel.com/en-us/blogs/2011/01/03/using-the-intel-threading-building-blocks-graph-community-preview-feature-creating-a-simple-message-graph/
http://software.intel.com/en-us/blogs/2011/01/03/using-the-intel-threading-building-blocks-graph-community-preview-feature-creating-a-simple-message-graph/
http://software.intel.com/en-us/blogs/2011/01/03/using-the-intel-threading-building-blocks-graph-community-preview-feature-creating-a-simple-message-graph/
http://software.intel.com/en-us/blogs/2011/01/03/using-the-intel-threading-building-blocks-graph-community-preview-feature-creating-a-simple-message-graph/
http://software.intel.com/en-us/blogs/2011/01/03/using-the-intel-threading-building-blocks-graph-community-preview-feature-creating-a-simple-message-graph/
http://software.intel.com/en-us/blogs/2011/01/03/using-the-intel-threading-building-blocks-graph-community-preview-feature-creating-a-simple-message-graph/
http://software.intel.com/en-us/blogs/2011/01/03/using-the-intel-threading-building-blocks-graph-community-preview-feature-creating-a-simple-message-graph/
http://software.intel.com/en-us/blogs/2010/12/23/intel-threading-building-blocks-version-30-update-5-introduces-graph-as-a-community-preview-feature-2/
http://software.intel.com/en-us/blogs/2010/12/23/intel-threading-building-blocks-version-30-update-5-introduces-graph-as-a-community-preview-feature-2/
http://software.intel.com/en-us/blogs/2010/12/23/intel-threading-building-blocks-version-30-update-5-introduces-graph-as-a-community-preview-feature-2/
http://software.intel.com/en-us/blogs/2010/12/23/intel-threading-building-blocks-version-30-update-5-introduces-graph-as-a-community-preview-feature-2/
http://software.intel.com/en-us/blogs/2010/12/23/intel-threading-building-blocks-version-30-update-5-introduces-graph-as-a-community-preview-feature-2/
http://software.intel.com/en-us/blogs/2010/12/23/intel-threading-building-blocks-version-30-update-5-introduces-graph-as-a-community-preview-feature-2/
http://software.intel.com/en-us/blogs/2010/12/23/intel-threading-building-blocks-version-30-update-5-introduces-graph-as-a-community-preview-feature-2/
http://software.intel.com/en-us/blogs/2010/12/23/intel-threading-building-blocks-version-30-update-5-introduces-graph-as-a-community-preview-feature-2/
http://software.intel.com/en-us/blogs/2010/12/23/intel-threading-building-blocks-version-30-update-5-introduces-graph-as-a-community-preview-feature-2/
http://software.intel.com/en-us/blogs/2010/12/23/intel-threading-building-blocks-version-30-update-5-introduces-graph-as-a-community-preview-feature-2/
http://software.intel.com/en-us/blogs/2010/12/23/intel-threading-building-blocks-version-30-update-5-introduces-graph-as-a-community-preview-feature-2/
http://software.intel.com/en-us/blogs/2010/12/23/intel-threading-building-blocks-version-30-update-5-introduces-graph-as-a-community-preview-feature-2/
http://software.intel.com/en-us/blogs/2010/12/23/intel-threading-building-blocks-version-30-update-5-introduces-graph-as-a-community-preview-feature-2/
http://software.intel.com/en-us/blogs/2010/12/23/intel-threading-building-blocks-version-30-update-5-introduces-graph-as-a-community-preview-feature-2/
http://software.intel.com/en-us/blogs/2010/12/23/intel-threading-building-blocks-version-30-update-5-introduces-graph-as-a-community-preview-feature-2/
http://software.intel.com/en-us/blogs/2010/12/23/intel-threading-building-blocks-version-30-update-5-introduces-graph-as-a-community-preview-feature-2/
http://software.intel.com/en-us/blogs/2010/12/23/intel-threading-building-blocks-version-30-update-5-introduces-graph-as-a-community-preview-feature-2/
http://software.intel.com/en-us/blogs/2010/12/23/intel-threading-building-blocks-version-30-update-5-introduces-graph-as-a-community-preview-feature-2/
http://software.intel.com/en-us/blogs/2010/12/23/intel-threading-building-blocks-version-30-update-5-introduces-graph-as-a-community-preview-feature-2/
http://software.intel.com/en-us/blogs/2010/12/23/intel-threading-building-blocks-version-30-update-5-introduces-graph-as-a-community-preview-feature-2/
http://software.intel.com/en-us/blogs/2010/12/23/intel-threading-building-blocks-version-30-update-5-introduces-graph-as-a-community-preview-feature-2/
http://software.intel.com/en-us/blogs/2010/12/23/intel-threading-building-blocks-version-30-update-5-introduces-graph-as-a-community-preview-feature-2/
http://software.intel.com/en-us/blogs/2010/12/23/intel-threading-building-blocks-version-30-update-5-introduces-graph-as-a-community-preview-feature-2/
http://software.intel.com/en-us/blogs/2010/12/23/intel-threading-building-blocks-version-30-update-5-introduces-graph-as-a-community-preview-feature-2/
http://software.intel.com/en-us/blogs/2010/12/23/intel-threading-building-blocks-version-30-update-5-introduces-graph-as-a-community-preview-feature-2/
http://software.intel.com/en-us/blogs/2010/12/23/intel-threading-building-blocks-version-30-update-5-introduces-graph-as-a-community-preview-feature-2/
http://software.intel.com/en-us/blogs/2010/12/23/intel-threading-building-blocks-version-30-update-5-introduces-graph-as-a-community-preview-feature-2/
http://software.intel.com/en-us/blogs/2010/12/23/intel-threading-building-blocks-version-30-update-5-introduces-graph-as-a-community-preview-feature-2/
http://software.intel.com/en-us/blogs/2010/12/23/intel-threading-building-blocks-version-30-update-5-introduces-graph-as-a-community-preview-feature-2/
http://software.intel.com/en-us/blogs/2010/12/23/intel-threading-building-blocks-version-30-update-5-introduces-graph-as-a-community-preview-feature-2/
http://software.intel.com/en-us/blogs/2010/12/23/intel-threading-building-blocks-version-30-update-5-introduces-graph-as-a-community-preview-feature-2/
http://software.intel.com/en-us/blogs/2010/12/23/intel-threading-building-blocks-version-30-update-5-introduces-graph-as-a-community-preview-feature-2/
http://software.intel.com/en-us/blogs/2010/12/23/intel-threading-building-blocks-version-30-update-5-introduces-graph-as-a-community-preview-feature-2/

Software & Services Group

Developer Products Division Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Intel® Array Building Blocks
A Research Project (whatif.intel.com)

CPU
Future

Intel®
SSE**

Intel®
AVX**

Single source
Productivity
 Integrates with existing tools

 Applicable to many problem domains

 Safe by default: maintainable

Performance
 Efficient and scalable

 Harnesses both vectors and threads

 Eliminates modularity overhead of C++

Portability
 High-level abstraction

 Hardware independent

 Forward scaling

** Intel® Streaming SIMD Extensions
 Intel® Advanced Vector Extensions

139

Software & Services Group

Developer Products Division Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Outlook on Future Models to Express Parallelism

 What if Software were like this?

 Implementation of these models partially are available
as preview features from http://whatif.intel.com

 Some of the models are pure research projects at Intel,
e.g.

 Intel® Array Building Blocks (Intel® ArBB)
 C++ library for parallel array operations
 Dynamic compilation allows architectural customization
 Array notation enabling parallel array operations

 These models might or might not make it into any of
Intel’s developer products

No decisions should be made regarding these feature
being available in future products from Intel

140

http://whatif.intel.com/

Software & Services Group

Developer Products Division Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners. 141

Software & Services Group

Developer Products Division Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Optimization Notice

142

Optimization Notice

Intel’s compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations

that are not unique to Intel microprocessors. These optimizations include SSE2®, SSE3, and SSSE3

instruction sets and other optimizations. Intel does not guarantee the availability, functionality, or

effectiveness of any optimization on microprocessors not manufactured by Intel. Microprocessor-dependent

optimizations in this product are intended for use with Intel microprocessors. Certain optimizations not specific

to Intel microarchitecture are reserved for Intel microprocessors. Please refer to the applicable product User

and Reference Guides for more information regarding the specific instruction sets covered by this notice.

Notice revision #20110804

