
Matthias Lieber (matthias.lieber@tu-dresden.de)

Parallel Debugging with Allinea DDT

Parallel Programming Course, Dresden, 8.- 12. February 2016

Center for Information Services and High Performance Computing (ZIH)

2Parallel Debugging with Allinea DDT

Why using a Debugger?

Your program…

– terminates abnormally

– produces wrong results

– shows incomprehensible behavior

You want to know what your program is (really) doing

Typical example: your program crashes with a segmentation fault

% icc myprog.c –o myprog

% ./myprog

Segmentation fault

%

What’s going
wrong?

3Parallel Debugging with Allinea DDT

What can a Debugger do?

Observe a running program:

– Print variables (scalars, arrays, structures / derived types, classes)

– Inform about current source code line and function (function call
stack)

Control the program execution:

– Stop the program at a specific source code line (Breakpoints)

– Stop the program by evaluating variable expressions (Conditional
Breakpoints and Watchpoints)

– Stop the program before terminating abnormally

– Execute the program line-by-line (Stepping)

4Parallel Debugging with Allinea DDT

Typical Usage of a Debugger

Compile the program with the –g compiler flag

– gcc –g myprog.c –o myprog

Run the program under control of the debugger:

– ddt ./myprog

– Locate the position of the problem and examine
variables

– Find out why the program shows unexpected
behavior

Edit the source code, modify parameters, etc.

Repeat until problem is solved

5Parallel Debugging with Allinea DDT

Debugger Operation Modes

Start program under debugger control

– Most common way to use a debugger

– Not useful if you want to observe what the program does after a
long runtime

Attach to an already running program

– Program was not started under debugger

– Useful if program has been running for a long time

Core files / core dumps

– Core files are memory state of a crashed program written to disk

– Only static analysis of program’s data after termination

– Useful if you don’t expect a crash or don’t want to wait until a
crash happens (probably after long runtime)

6Parallel Debugging with Allinea DDT

Before you start using a Debugger…

Use compiler’s check capabilities like -Wall etc.

– Read compiler’s manual: man {gcc|ifort|pgf90|...}

– Intel C: -Wall -Wp64 -Wuninitialized -strict-ansi

– Intel Fortran: -warn all -std95 -C -fpe0 -traceback

Always compile your application with the –g flag, especially
during developing and testing

– Adds symbolic debug info to binary, no performance impact

Optimizations often interfere with debugging (e.g. functions or
variables of interest are “optimized away”)

– If necessary, compile with –O0 to disable optimizations

7

Allinea DDT (Distributed Debugging Tool)

Parallel Debugging with Allinea DDT

Commercial debugging tool by Allinea

C, C++, Fortran

Parallel Support: pThreads, OpenMP, MPI, PGAS languages, CUDA,
OpenACC, Xeon Phi

Available for all common HPC platforms

Intuitive graphical user interface

Advanced features:

– Visualization of array contents

– Memory debugging

– Modify variables

More info: http://www.allinea.com

8

% mpicc –g –O0 heatC-MPI.c –o heatC-MPI

% ddt ./heatC-MPI

Allinea DDT: MPI Program Start

Parallel Debugging with Allinea DDT

Compile with
Debugging

Start DDT

Set MPI
implementation and

number of MPI
processes

Start Program

… and / or number
of OpenMP threads

9Parallel Debugging with Allinea DDT

Allinea DDT: Main Window

Process and
thread

selection

Source file
browser

Variables
pane

Evaluation
window

Process
control:

run, stop,
stepping

Output,
Breakpoints,
Watchpoints,

Call stack

Source view

10

Allinea DDT: Process Control & Stepping

Parallel Debugging with Allinea DDT

Run

Pause

Step to
next code
line

Step over
function
calls

Step out
of current
funtion Right mouse button at

source code line
-> „Run to here“

Select group /
processes

Commands may affect whole group or
single processes / threads

11Parallel Debugging with Allinea DDT

Allinea DDT: Segmentation Fault

Hit “Pause” to
stop the program

Segmentation
Fault!

This is the
line where

the program
crashed

Processes 2
and 3 crashed

12Parallel Debugging with Allinea DDT

Allinea DDT: Breakpoints (1)

Then hit run …

Click to the
margin left of

the line
number

Or open
context menu

on source
code line

Edit breakpoint, e.g.
to add condition

13Parallel Debugging with Allinea DDT

Allinea DDT: Breakpoints (2)

Processes 0
and 2 stopped
at conditional

breakpoint

14Parallel Debugging with Allinea DDT

Allinea DDT: Array Visualization

15

Allinea DDT: Attach to running program

Parallel Debugging with Allinea DDT

% mpif90 –g heatF-MPI-05.F90 –o heatF-MPI-05

% mpirun –np 4 ./heatF-MPI-05

. . . % ddt

Start DDT in a
2nd terminal:

Programs runs – you
want to know what

it is doing?

AttachSelect your
program’s
processes

16

Allinea DDT: Core Files (1)

Parallel Debugging with Allinea DDT

% mpif90 –g heatF-MPI-01.F90 –o heatF-MPI-01

% ulimit –c
1

% ulimit –Sc 100000

% export decfort_dump_flag=yes

% mpirun –np 2 ./heatF-MPI-01

. . .

mpirun noticed that process rank 0 with PID 27934 on node login1
exited on signal 11 (Segmentation fault).

% ls -l *.core
-rw------- 1 hpclab70 zih-hpclab 76M 10. Feb 11:03 login1.27934.core
-rw------- 1 hpclab70 zih-hpclab 76M 10. Feb 11:03 login1.27935.core

% ddt

Check core file size limit
(reports kB) and increase if
required (sets to 100 MB)

Intel Fortran only

Run program

Program crashes

Corefiles created

Analyze with DDT

17

Allinea DDT: Core Files (2)

Parallel Debugging with Allinea DDT

DDT shows position of
crash in source code

DDT shows variables at
the time of the crash

But no stepping
possible!

Hit „Open Core“

