
Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

intel.com/software/products

Agenda

1

Time Title

09:00-09:15 Welcome, Introduction

09:15-09:45
Overview –

Intel Processor Architecture Evolution

09:45-10:15 Intel’s Software Development offerings at a glance

10:15-11:15
Strategies for Parallelism with Intel® Threading

Methodologies

11:15-12:30
Intel® Composer XE – the powerful compiler and

performance libraries collection

12:30-13:30 Break

13:30-14:00 Intel® Inspector XE - Detect memory and threading errors

14:00-14:30 Intel® Amplifier XE - Understand performance issues

14:30-15:00 Intel® Advisor XE – Get started with parallelization

15:00-16:00
Intel Development Tools for Multi-threading in a typical
Development Cycle – Life-Demo – Wrap-up

16:00- ... Q&A, opens, discussion

http://intel.com/software/products

Software & Services Group

Developer Products Division Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners. 2

Intel® Composer XE
Overview

Hubert Haberstock

Technical Consulting Engineer

Intel GmbH

Software & Services Group

Developer Products Division Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

What is the Composer XE?

• New name for the Intel compilers
– Intel® Composer XE for Windows*|Linux*|Mac OS* X (formerly Intel® Compiler

Suite Professional Edition for Windows*|Linux*|Mac OS* X)

– Intel® C++ Composer XE for Windows*|Linux*|Mac OS* X (formerly Intel®
Compiler Professional Edition for Windows*|Linux*|Mac OS* X)

– Intel® Visual Fortran Composer XE for Windows* (formerly Intel® Visual Fortran
Compiler Professional Edition for Windows*)

– Intel® Fortran Composer XE for Linux*|Mac OS* X (formerly Intel® Visual Fortran
Compiler Professional Edition for Linux*|Mac OS* X)

• Part of the new product bundle
Intel® C++|Fortran|Parallel Studio XE
– but also available separately

• Includes performance libraries, debugger,
debugger extension, new threading methodologies

3

Software & Services Group

Developer Products Division Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners. 4

Intel® C++
Composer XE 2013 SP1

• Intel® C++ Compiler XE 14.0
• Intel® Debugger + gdb add-ons
• Intel® Threading Building Blocks
• Intel® Cilk™ Plus
• Intel® Math Kernel Library
• Intel® Integrated Performance

Primitives

Intel® Fortran
Composer XE 2013 SP1

• Intel® Fortran Compiler XE 14.0
• Intel® Debugger + gdb add-ons
• Intel® Math Kernel Library
• Intel® Integrated Performance

Primitives

Intel Composer XE 2013 SP1 - Overview
Compilers, Performance Libraries, Debugging Tools

• Leading Performance Optimizing
Compilers

- Intel® C++ with Intel® Cilk™ Plus and Fortran
Compiler

- Intel® Integrated Performance Primitives

- Intel® Math Kernel Library libraries

• Standard Support

- OpenMP* 4.0

- Support for key parts of the latest Fortran and
C++ standards, Visual Studio* Shell for Visual
Fortran*

• Compatibility – Mix and Match

• Windows: Visual* C++ and Visual Studio* 2008,
2010, 2012

• Linux*, OS X*, gcc and, for C++ Eclipse & Xcode
for Mac

• Architecture Support

• Intel compatible IA processors

• Intel® Xeon Phi™ product family,

Windows*, Linux*, Mac OS*

Software & Services Group

Developer Products Division Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Continued
compiler
performance
leadership
on C++ and
Fortran

5

Software & Services Group

Developer Products Division Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Leadership Application Performance

6

Software & Services Group

Developer Products Division Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners. 7

SSE /
SSE2

AVX-512

AVX / AVX2

Up to 4x Faster Performance
with Intel® Advanced Vector Extensions 512 (Intel® AVX-512) Support

Enables higher performance for the most demanding
computational tasks

Intel® Compilers and Intel®
Math Kernel Library will be
updated in Q4 with AVX-512
support

- Significant leap to 512-bit SIMD

support

- Increased compatibility with AVX

- One byte longer EVEX prefix,
enabling additional functionality

- First implemented in the future
Intel® Xeon Phi™ coprocessor,
code named Knights Landing

4x

up
to

faster

2x

up
to

faster

Peak single precision floating point performance

Software & Services Group

Developer Products Division Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Expanded C++ 11 support

8

Excellent Support for C++ 11 on Windows* and Linux*

New in SP1 (14.0 compilers)

– Unrestricted unions (Linux*, OS X*)

– Non-static data member initializers

– Explicit Virtual Overrides

– Allowing move constructors to throw

– Defining Move Special Member Functions

– Inline namespaces

– Rvalue references v2

Full list of actual C++ 11 support:
http://software.intel.com/en-us/articles/c0x-features-
supported-by-intel-c-compiler

Full C++11 Support planned for next release

http://software.intel.com/en-us/articles/c0x-features-supported-by-intel-c-compiler
http://software.intel.com/en-us/articles/c0x-features-supported-by-intel-c-compiler
http://software.intel.com/en-us/articles/c0x-features-supported-by-intel-c-compiler
http://software.intel.com/en-us/articles/c0x-features-supported-by-intel-c-compiler
http://software.intel.com/en-us/articles/c0x-features-supported-by-intel-c-compiler
http://software.intel.com/en-us/articles/c0x-features-supported-by-intel-c-compiler
http://software.intel.com/en-us/articles/c0x-features-supported-by-intel-c-compiler
http://software.intel.com/en-us/articles/c0x-features-supported-by-intel-c-compiler
http://software.intel.com/en-us/articles/c0x-features-supported-by-intel-c-compiler
http://software.intel.com/en-us/articles/c0x-features-supported-by-intel-c-compiler
http://software.intel.com/en-us/articles/c0x-features-supported-by-intel-c-compiler
http://software.intel.com/en-us/articles/c0x-features-supported-by-intel-c-compiler
http://software.intel.com/en-us/articles/c0x-features-supported-by-intel-c-compiler
http://software.intel.com/en-us/articles/c0x-features-supported-by-intel-c-compiler
http://software.intel.com/en-us/articles/c0x-features-supported-by-intel-c-compiler

Software & Services Group

Developer Products Division Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Standards Conformance – C99

• Full support:

• Restricted pointers (restrict keyword).

• Variable-length Arrays

• Flexible array members

• Complex number support (_Complex keyword)

• Hexadecimal floating-point constants

• Compound literals

• Designated initializers

• Mixed declarations and code

• Macros with a variable number of arguments

• Inline functions (inline keyword)

• Boolean type (_Bool keyword)

• long double is 64 bit, not 128 bit (only Linux*)

• Full list of actual C99 support:

http://software.intel.com/en-us/articles/c99-support-in-intel-c-

compiler

9

http://software.intel.com/en-us/articles/c99-support-in-intel-c-compiler
http://software.intel.com/en-us/articles/c99-support-in-intel-c-compiler
http://software.intel.com/en-us/articles/c99-support-in-intel-c-compiler
http://software.intel.com/en-us/articles/c99-support-in-intel-c-compiler
http://software.intel.com/en-us/articles/c99-support-in-intel-c-compiler
http://software.intel.com/en-us/articles/c99-support-in-intel-c-compiler
http://software.intel.com/en-us/articles/c99-support-in-intel-c-compiler
http://software.intel.com/en-us/articles/c99-support-in-intel-c-compiler
http://software.intel.com/en-us/articles/c99-support-in-intel-c-compiler
http://software.intel.com/en-us/articles/c99-support-in-intel-c-compiler
http://software.intel.com/en-us/articles/c99-support-in-intel-c-compiler
http://software.intel.com/en-us/articles/c99-support-in-intel-c-compiler
http://software.intel.com/en-us/articles/c99-support-in-intel-c-compiler
http://software.intel.com/en-us/articles/c99-support-in-intel-c-compiler
http://software.intel.com/en-us/articles/c99-support-in-intel-c-compiler

Software & Services Group

Developer Products Division Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Excellent Fortran 2008 Support

– Maximum array rank has been raised to 31
dimensions (Fortran 2008 specifies 15)

– Recursive type may have ALLOCATABLE
components

– Coarrays
– CODIMENSION attribute

– SYNC ALL statement

– SYNC IMAGES statement

– SYNC MEMORY statement

– CRITICAL and END CRITICAL statements

– LOCK and UNLOCK statements

– ERROR STOP statement

– ALLOCATE and DEALLOCATE may specify
coarrays

– Intrinsic procedures IMAGE_INDEX,
LCOBOUND, NUM_IMAGES, THIS_IMAGE,
UCOBOUND

– CONTIGUOUS attribute

– MOLD keyword in ALLOCATE

– DO CONCURRENT

– NEWUNIT keyword in OPEN

G0 and G0.d format edit descriptor
Unlimited format item repeat count specifier
CONTAINS section may be empty
Intrinsic procedures
BESSEL_J0, BESSEL_J1, BESSEL_JN,
BESSEL_YN, BGE, BGT, BLE, BLT, DSHIFTL,
DSHIFTR, ERF, ERFC, ERFC_SCALED, GAMMA,
HYPOT, IALL, IANY, IPARITY, IS_CONTIGUOUS,
LEADZ, LOG_GAMMA, MASKL, MASKR,
MERGE_BITS, NORM2, PARITY, POPCNT,
POPPAR, SHIFTA, SHIFTL, SHIFTR,
STORAGE_SIZE, TRAILZ
Additions to intrinsic module
ISO_FORTRAN_ENV: ATOMIC_INT_KIND,
ATOMIC_LOGICAL_KIND,
CHARACTER_KINDS, INTEGER_KINDS, INT8,
INT16, INT32, INT64, LOCK_TYPE,
LOGICAL_KINDS, REAL_KINDS, REAL32,
REAL64, REAL128, STAT_LOCKED,
STAT_LOCKED_OTHER_IMAGE,
STAT_UNLOCKED

Leadership F2008 Support on Linux*, Windows* & OSX*

Compilers
&
Libraries

Support for Submodules highly requested
• Planned, but not committed yet

10

Full list of actual Fortran support: http://software.intel.com/en-us/articles/intel-fortran-compiler-
support-for-fortran-language-standards

http://software.intel.com/en-us/articles/intel-fortran-compiler-support-for-fortran-language-standards
http://software.intel.com/en-us/articles/intel-fortran-compiler-support-for-fortran-language-standards
http://software.intel.com/en-us/articles/intel-fortran-compiler-support-for-fortran-language-standards
http://software.intel.com/en-us/articles/intel-fortran-compiler-support-for-fortran-language-standards
http://software.intel.com/en-us/articles/intel-fortran-compiler-support-for-fortran-language-standards
http://software.intel.com/en-us/articles/intel-fortran-compiler-support-for-fortran-language-standards
http://software.intel.com/en-us/articles/intel-fortran-compiler-support-for-fortran-language-standards
http://software.intel.com/en-us/articles/intel-fortran-compiler-support-for-fortran-language-standards
http://software.intel.com/en-us/articles/intel-fortran-compiler-support-for-fortran-language-standards
http://software.intel.com/en-us/articles/intel-fortran-compiler-support-for-fortran-language-standards
http://software.intel.com/en-us/articles/intel-fortran-compiler-support-for-fortran-language-standards
http://software.intel.com/en-us/articles/intel-fortran-compiler-support-for-fortran-language-standards
http://software.intel.com/en-us/articles/intel-fortran-compiler-support-for-fortran-language-standards
http://software.intel.com/en-us/articles/intel-fortran-compiler-support-for-fortran-language-standards
http://software.intel.com/en-us/articles/intel-fortran-compiler-support-for-fortran-language-standards
http://software.intel.com/en-us/articles/intel-fortran-compiler-support-for-fortran-language-standards
http://software.intel.com/en-us/articles/intel-fortran-compiler-support-for-fortran-language-standards
http://software.intel.com/en-us/articles/intel-fortran-compiler-support-for-fortran-language-standards

Software & Services Group

Developer Products Division Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Expanded Fortran Capabilities in SP1

• Fortran 2008
–ATOMIC_DEFINE and ATOMIC_REF
–initialization of polymorphic INTENT(OUT) dummy
arguments

–standard handling of G format and of printing the value zero
–polymorphic source allocation

•Co-array now supports Intel® Xeon Phi™
Coprocessor

11

Intel Fortran: Leadership Performance with a Leading Feature Set

Software & Services Group

Developer Products Division Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

FORTRAN 2003 Support

Added in Intel® Fortran Composer XE 2013 SP1 (aka 14.0,

released Q3/2013)

• User-defined derived type I/O

• Parts of the missing intrinsics

FORTRAN 2003 features still missing today:

• Parameterized derived types (soon)

• Transformational intrinsics, such as MERGE and SPREAD, in

initialization expression (later)

Complete FORTRAN 2003 support

• Scheduled for next major release (15.0, Q4’2014)

12

Full list of actual Fortran support: http://software.intel.com/en-us/articles/intel-fortran-compiler-
support-for-fortran-language-standards

http://software.intel.com/en-us/articles/intel-fortran-compiler-support-for-fortran-language-standards
http://software.intel.com/en-us/articles/intel-fortran-compiler-support-for-fortran-language-standards
http://software.intel.com/en-us/articles/intel-fortran-compiler-support-for-fortran-language-standards
http://software.intel.com/en-us/articles/intel-fortran-compiler-support-for-fortran-language-standards
http://software.intel.com/en-us/articles/intel-fortran-compiler-support-for-fortran-language-standards
http://software.intel.com/en-us/articles/intel-fortran-compiler-support-for-fortran-language-standards
http://software.intel.com/en-us/articles/intel-fortran-compiler-support-for-fortran-language-standards
http://software.intel.com/en-us/articles/intel-fortran-compiler-support-for-fortran-language-standards
http://software.intel.com/en-us/articles/intel-fortran-compiler-support-for-fortran-language-standards
http://software.intel.com/en-us/articles/intel-fortran-compiler-support-for-fortran-language-standards
http://software.intel.com/en-us/articles/intel-fortran-compiler-support-for-fortran-language-standards
http://software.intel.com/en-us/articles/intel-fortran-compiler-support-for-fortran-language-standards
http://software.intel.com/en-us/articles/intel-fortran-compiler-support-for-fortran-language-standards
http://software.intel.com/en-us/articles/intel-fortran-compiler-support-for-fortran-language-standards
http://software.intel.com/en-us/articles/intel-fortran-compiler-support-for-fortran-language-standards
http://software.intel.com/en-us/articles/intel-fortran-compiler-support-for-fortran-language-standards
http://software.intel.com/en-us/articles/intel-fortran-compiler-support-for-fortran-language-standards
http://software.intel.com/en-us/articles/intel-fortran-compiler-support-for-fortran-language-standards

Software & Services Group

Developer Products Division Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

New Installer Features

• Online installer: A small installation program ~4 MB

• Select the components to install

• Components are downloaded and installed on demand
from the Intel® Registration and Download Center

• Requires an internet connection, may require proxy
setting. For details, see http://software.intel.com/en-
us/articles/how-to-set-system-proxy

• Internet connection speed will impact installation time

• Offline: Full packages of Composer XE and Libraries available
for offline installations

• New GUI installation for Linux* available, --gui-mode

1
3 13

http://software.intel.com/en-us/articles/how-to-set-system-proxy
http://software.intel.com/en-us/articles/how-to-set-system-proxy
http://software.intel.com/en-us/articles/how-to-set-system-proxy
http://software.intel.com/en-us/articles/how-to-set-system-proxy
http://software.intel.com/en-us/articles/how-to-set-system-proxy
http://software.intel.com/en-us/articles/how-to-set-system-proxy
http://software.intel.com/en-us/articles/how-to-set-system-proxy
http://software.intel.com/en-us/articles/how-to-set-system-proxy
http://software.intel.com/en-us/articles/how-to-set-system-proxy
http://software.intel.com/en-us/articles/how-to-set-system-proxy
http://software.intel.com/en-us/articles/how-to-set-system-proxy
http://software.intel.com/en-us/articles/how-to-set-system-proxy
http://software.intel.com/en-us/articles/how-to-set-system-proxy

Software & Services Group

Developer Products Division Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Optional GUI installer on Linux*

14

Software & Services Group

Developer Products Division Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Intel® XEON Phi Support

15

Intel® Many Integrated Core (Intel® MIC) support
added since 2013 release (compiler version 13.0)

• Only Intel® Xeon Phi processor family (code
name Knights Corner / KNC), not KNF
anymore

• One product only ! (no additional license
required)

• Needs MPSS stack installed on host system to
compile (not only for linking)
• Very likely to be changed in future release

Software & Services Group

Developer Products Division Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Enhancement of Compiler Reporting

Intel Compilers offers two switches to get compiler reports:

 -vec-report for vectorization

 -opt-report for loop transformations, inlining, prefetching, …

An initiative has started to enhance both reports. It will take some time

to implement all enhancements requests we received and which we

consider doable.

Some items improved or to be improved in future releases:

- More details on vectorization success or failure like

- Unrolling

- Remainder loop

- Alignment

-Automated mapping of information to source code

-Optimization report will be enhanced too / will be made easier to read

16

Software & Services Group

Developer Products Division Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners. 17

Vectorization Report

Provides details on vectorization success & failure:

Linux*, Mac OS* X: -vec-report<n>, Windows*: /Qvec-report<n>

n Diagnostic Messages

0 Tells the vectorizer to report no diagnostic information. Useful for
turning off reporting in case it was enabled on command line
earlier.

1 Tells the vectorizer to report on vectorized loops.
[default if n missing]

2 Tells the vectorizer to report on vectorized and non-vectorized
loops.

3 Tells the vectorizer to report on vectorized and non-vectorized
loops and any proven or assumed data dependences.

4 Tells the vectorizer to report on non-vectorized loops.

5 Tells the vectorizer to report on non-vectorized loops and the
reason why they were not vectorized.

6 Tells the vectorizer to emit greater detail when reporting on
vectorized and non-vectorized loops and any proven or assumed
data dependences: Introduced by compiler 13.0

7 Very sophisticated vectorization report including support of source
code annotation using Python helper scripts: Introduced by
compiler 13.1

Software & Services Group

Developer Products Division Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners. 18

Level 6 Vectorization Report Sample
 6: forall(i= 1:n)

 7: a(i)= a(i)-b(i)*d(i)

 8: c(i)= a(i)+c(i)

 9: endforall

10:

11: do i=1,n

12: a(i)= a(i)-b(i)*d(i)

13: c(i)= a(i)+c(i)

14: enddo

l2.f90(7): (col. 5) remark: LOOP WAS VECTORIZED.

l2.f90(8): (col. 5) remark: LOOP WAS VECTORIZED.

l2.f90(11): (col. 3) remark: LOOP WAS VECTORIZED.

-vec-report3

l2.f90(7): (col. 5) remark: vectorization support: unroll factor set to 2.

l2.f90(7): (col. 5) remark: LOOP WAS VECTORIZED.

l2.f90(8): (col. 5) remark: vectorization support: unroll factor set to 2.

l2.f90(8): (col. 5) remark: LOOP WAS VECTORIZED.

l2.f90(11): (col. 3) remark: vectorization support: unroll factor set to 2.

l2.f90(11): (col. 3) remark: LOOP WAS VECTORIZED.

-vec-report6

Software & Services Group

Developer Products Division Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Level 7 Vectorization Reporting

19

Provides very detailed and powerful vectorization
reporting including summary statistic and source
code annotation

• Details and required Python scripts available here
• Not documented in compiler manual yet !
• Python release must be 2.6.5 or younger

Sample usage:

ifort -c -vec-report7 loop.f90 2>&1 |

./vecanalysis/vecanalysis.py –list

This results in statistics displayed and an annotated
source file loop_ver.f90 to be created

http://software.intel.com/en-us/articles/vecanalysis-python-script-for-annotating-intelr-compiler-vectorization-report

Software & Services Group

Developer Products Division Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Some Intel-specific Extensions

20

• Available today / Composer XE 2013 SP1

– Btrace: Get stack trace even in case stack corrupted

– PDBX: Parallel Debug Extensions - Data Race Detection

– TSX: Intel® Transactional Memory Extension support

– Pointer Checking integration

• Being worked on for future release

– Full (Intel-) FORTRAN support as provided by Intel® IDB

– Full VLA (variable length array) debugging
• In collaboration with community (“GBD Archer project”) and Redhat

• Needed for FORTRAN but also for C99

Note: No own, specific debugger GUI as for Intel®
IDB

– But Eclipse-based GUI integration

Software & Services Group

Developer Products Division Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners. 21

New Instruction Support

3rd Generation Intel® Core™architecture code name
Ivy Bridge:

– Extension core-avx-i for –x switches

– Enables support for all intrinsics introduced by Ivy Bridge
(some 6) including RDRAND and 16 bit floating point
instructions

– No implicit code generation for new instructions

4th Generation Intel® Core™ architecture code name
Haswell:

– Extension core-avx2 for –x switches

– Enables intrinsic support (like for Intel® TSX) and
implicit code generation

– FMA instruction will be used by default but can be
disabled using switch –no-fma
• -valuable for FP consistence / rounding issues

Software & Services Group

Developer Products Division Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners. 22

•Supported via intrinsics :
–Intel Compilers 13.0 Update 2

–GNU GCC 4.8

New Instruction Support : Broadwell

RDSEED provide reliable seeds for pseudo-random
number generator

ADCX, ADOX large integer arithmetic addition

PREFETCHW extending SW prefetch

Software & Services Group

Developer Products Division Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners. 23

• Intel ® TSX is an optional feature for Haswell
– Not all models will have this feature

– Thus two CPU “guard” names are/will be available

 core_4th_gen_avx

 core_4th_gen_avx_tsx

Manual Code Dispatch: A Note

__declspec(cpu_specific(core_4th_gen_avx))

void dispatch_func()

{

 printf("\Code here can assume HSW NI but not TSX\n");

}

__ declspec(cpu_specific(core_4th_gen_avx_tsx))

void dispatch_func()

{

 printf("\Code here can assume TSX to be available\n");

}

Software & Services Group

Developer Products Division Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners. 24

Intel® Visual Fortran Composer XE 2013
with IMSL* for Windows*

• Same 13.1 compiler that is available separately
– Highly optimizing Fortran compiler featuring scalable multi-

threading with OpenMP, and introducing coarray Fortran (part of the
Fortran 2008 standard), including new parallelism models

– VAX Fortran and Compaq Visual Fortran compatibility

– In addition to IMSL, it includes Intel® Math Kernel Library (Intel®
MKL)

• Rogue Wave IMSL* 6.0 Math Library highlights
– Over 1,000 mathematical and statistical algorithms for developers

of Fortran applications

– Support for shared memory and distributed memory computing
environments

– High performance linear programming optimizer

– ScaLAPACK integration for MPI, LAPACK integration for SMP

– New probability density functions and inverses

– Time series and forecasting additions

– New Deployment Licensing terms and pricing

Software & Services Group

Developer Products Division Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Intel® Composer XE for Linux*
Release 4th Sept 2013

25

• The 13.0 compilers (Intel® C++ and Fortran Compiler XE 13.0)
introduced a large list of new features. All following updates improve
stability & compatibility.

• Latest “minor” version is 14.0 (released 4th Sept. 2013)

• Note: Intel® Debugger is deprecated with the next major version.
– But still needed for full Fortran debugging support

Intel® Composer XE 2013 SP1 for Linux* (32/64 bit)

• Intel® C++ Composer XE
Intel® C++ Compiler XE for applications (icc / icpc / idb / gdb-ia)

2013 SP1

14.0.0.080 Build 20130728

• Intel® Fortran Composer XE
Intel® C++ Compiler XE for applications (ifort / idbc)

2013 SP1

14.0.0.080 Build 20130728

• Intel® Integrated Performance Primitives (Intel® IPP) 8.0 Update 1

• Intel® Math Kernel Library (Intel® MKL) 11.1

• Intel® Threading Building Blocks (Intel® TBB) 4.1 Update 3

• MPSS package for linking to Intel® Xeon Phi™ 2013 Update 3.3

Software & Services Group

Developer Products Division Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Intel® Composer XE for Windows* / OS X*

26

Intel® Composer XE 2013 SP1 for Windows* (32/64 bit)

• Intel® C++ Composer XE
Intel® C++ Compiler XE for applications (icl)

2013 SP1

14.0.0.103 Build 20130728

• Intel® Visual Fortran Composer XE

(incl. Microsoft Visual Studio Shell and Libraries*)
Intel® Visual Fortran Compiler XE for applications (ifort)

2013 SP1

14.0.0.013 Build 20130728

• Intel® Integrated Performance Primitives (Intel® IPP) 8.0 Update 1

• Intel® Math Kernel Library (Intel® MKL) 11.1

• Intel® Threading Building Blocks (Intel® TBB) 4.2

• MPSS package for linking to Intel® Xeon Phi™ 2013 Update 3.1

Intel® Composer XE 2013 SP1 for OS X* (32/64 bit)

• Intel® C++ Composer XE (ICC/ICPC/IDB)
Intel® C++ Compiler XE for applications (icc / icpc / idb)

2013 SP1

14.0.0.074 Build 20130728

• Intel® Fortran Composer XE (IFORT/IDB)
Intel® C++ Compiler XE for applications (ifort / idb)

2013 SP1

14.0.0.074 Build 20130728

• OS X* versions do not contain Intel® Integrated Performance Primitives!

• Development decoupled from Linux*/Windows* products (see change in
version)

Software & Services Group

Developer Products Division Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Key Files Supplied with Compilers

Windows*
• Intel compiler

– icl.exe, ifort.exe: C/C++ compiler, Fortran compiler drivers
– mcpcom.exe, fortcom.exe: C/C++ or Fortran Compiler
– icl.cfg, ifort.cfg: Default compiler options
– compilervars.bat: Setup command window build environment (C/C++ and Fortran)

• Linker driver
– xilink.exe: Invokes link.exe

• Intel include files, libraries
• Re-distributable files

– <install-dir>\ComposerXE-2011\redist\

Linux*, Mac OS* X
• Intel compiler

– icc, ifort: C/C++ compiler, Fortran compiler
– mcpcom, fortcom: C/C++ or Fortran Compiler
– compilervars.(c)sh: Source scripts to setup the complete compiler/debugger/libraries

environment (C/C++ and Fortran)

• Linker driver
– xild: Invokes ld

• Intel include files, libraries
• Intel debugger

– idbc (Command Line) Debugger, idb (GUI) Debugger (Linux* only)

• GDB* Enhancements
– gdb-ia with btrace support and data race detection

27

Software & Services Group

Developer Products Division Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Command Line Build Environment
- Windows

• Sets the environment variables for command line
builds – common for C/C++ and Fortran

28

• Run C/C++/Fortran
compilers from command
line

Software & Services Group

Developer Products Division Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Visual Studio* 2010/2012 Integration

• Switch between
compilers (Intel /
Visual C++) – fully
integrated

• Additional Properties
options setting
when Intel Compiler
is set

29

Software & Services Group

Developer Products Division Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Command Line Build Environment
- Linux

• Sets the environment variables for command line builds – common
for C/C++ and Fortran

30

Software & Services Group

Developer Products Division Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Common Optimization Switches

31

Windows* Linux*

Disable optimization /Od -O0

Optimize for speed (no code size increase) /O1 -O1

Optimize for speed (default) /O2 -O2

High-level loop optimization /O3 -O3

Create symbols for debugging /Zi -g

Multi-file inter-procedural optimization /Qipo -ipo

Profile guided optimization (multi-step build) /Qprof-gen

/Qprof-use

-prof-gen

-prof-use

Optimize for speed across the entire program /fast
(same as: /O3 /Qipo
/Qprec-div- /QxHost)

-fast
(same as: -ipo –O3 -no-
prec-div -static -xHost)

OpenMP 3.0 support /Qopenmp -openmp

Automatic parallelization /Qparallel -parallel

Software & Services Group

Developer Products Division Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Compiler Reports – Optimization Report

Compiler switch:
/Qopt-report-phase[:phase] (Windows*)

-opt-report-phase[=phase] (Linux*, Mac OS* X)

 ‚phase‘ can be:
• ipo_inl - Interprocedural Optimization Inlining Report
• ilo – Intermediate Language Scalar Optimization
• hpo – High Performance Optimization
• hlo – High-level Optimization
• all – All optimizations (not recommended, output too

verbose)

Control the level of detail in the report:
/Qopt-report[0|1|2|3] (Windows*)
-opt-report[0|1|2|3] (Linux*, MacOS* X)

If you do not specify the option, no optimization report is being

generated; if you do not specify the level (i.e. /Qopt-report, -opt-
report) level 2 is being used by the compiler.

32

Software & Services Group

Developer Products Division Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Optimization Report Example
 icc –O3 –opt-report-phase=hlo -opt-report-phase=hpo
 icl /O3 /Qopt-report-phase:hlo /Qopt-report-phase:hpo

…

LOOP INTERCHANGE in loops at line: 7 8 9

Loopnest permutation (1 2 3) --> (2 3 1)

…

Loop at line 8 blocked by 128

Loop at line 9 blocked by 128

Loop at line 10 blocked by 128

…

Loop at line 10 unrolled and jammed by 4

Loop at line 8 unrolled and jammed by 4

…

…(10)… loop was not vectorized: not inner loop.

…(8)… loop was not vectorized: not inner loop.

…(9)… PERMUTED LOOP WAS VECTORIZED

…

icc –vec-report2 (icl /Qvec-report2) for just the vectorization report

33

Software & Services Group

Developer Products Division Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Case study: Matrix calculation

#include <stdio.h>
#include <time.h>

#define NUM 1024
main()
{
 clock_t start, stop;
 int num;

 // initialize the arrays with data
 init_arr(3,-2,1,a);
 init_arr(-2,1,3,b);

 //start timing the matrix multiply code
 printf("NUM:%d\n",NUM);
 start = clock();
 multiply_d(a,b,c);
 stop = clock();

 // print simple test case of data to be sure multiplication is correct
 if (NUM < 5) {
 print_arr("a", a);
 print_arr("b", b);
 print_arr("c", c);
 }

 // print elapsed time
 printf("Elapsed time = %lf seconds\n",((double)(stop - start)) / CLOCKS_PER_SEC);

}

34

Software & Services Group

Developer Products Division Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Case study: Matrix calculation

//routine to initialize an array with data
void init_arr(double row, double col, double off, double a[][NUM])
{
 int i,j;

 for (i=0; i< NUM;i++) {
 for (j=0; j<NUM;j++) {
 a[i][j] = row*i+col*j+off;
 }
 }
}

// routine to print out contents of small arrays
void print_arr(char * name, double array[][NUM])
{
 int i,j;

 printf("\n%s\n", name);
 for (i=0;i<NUM;i++){
 for (j=0;j<NUM;j++) {
 printf("%g\t",array[i][j]);
 }
 printf("\n");
 }
}

35

Software & Services Group

Developer Products Division Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Case study: Matrix calculation

static double a[NUM][NUM], b[NUM][NUM], c[NUM][NUM];

void multiply_d(double a[][NUM], double b[][NUM], double c[][NUM]);

void multiply_d(double a[][NUM], double b[][NUM], double c[][NUM])

{

 int i,j,k;

 double temp;

 for(i=0;i<NUM;i++) {

 for(j=0;j<NUM;j++) {

 for(k=0;k<NUM;k++) {

 c[i][j] = c[i][j] + a[i][k] * b[k][j];

 }

 }

 }

}

36

Software & Services Group

Developer Products Division Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Case study: Matrix calculation

• Compile the program matrix.c/matrix.f90 without
optimization and with /O1 – compare results (e.g.):

icl /Od matrix.c /o noopt_matrix.exe

icl /O1 matrix.c /o O1_matrix.exe

• Run and time the executable

noopt_matrix.exe >> 30,25 sec.

O1_matrix.exe >> 9,6 sec.

[Intel® Core™ i7, 4-Core 64-bit, 1,6GHz]

37

Software & Services Group

Developer Products Division Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

High-Level Optimizer (HLO)

• Compiler switches:
/O2, /O3 (Windows*), -O2, -O3 (Linux*)

• Loop level optimizations

– loop unrolling, cache blocking, prefetching

• More aggressive dependency analysis

– Determines whether or not it‘s safe to reorder or parallelize
statements

• Scalar replacement

– Goal is to reduce memory by replacing with register
references

38

Software & Services Group

Developer Products Division Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners. 40

Interprocedural Optimizations (IPO)
Multi-pass Optimization

• Interprocedural optimizations performs a static, topological analysis
of your application!

• ip: Enables inter-procedural
 optimizations for current
 source file compilation

• ipo: Enables inter-procedural
 optimizations across files
 Can inline functions in separate files

 Especially many small utility functions benefit from IPO

Enabled optimizations:
• Procedure inlining (reduced function call overhead)
• Interprocedural dead code elimination, constant propagation and procedure

reordering
• Enhances optimization when used in combination with other compiler features

Windows* Linux*

/Qip -ip

/Qipo -ipo

Software & Services Group

Developer Products Division Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners. 41

Interprocedural Optimizations (IPO)
Usage: Two-Step Process

Linking

Linux* icc -ipo main.o func1.o

func2.o

Windows* icl /Qipo main.o func1.o

func2.obj

Pass 1

Pass 2

mock object

executable

Compiling

Linux* icc -c -ipo main.c func1.c

func2.c

Windows* icl -c /Qipo main.c func1.c

func2.c

Software & Services Group

Developer Products Division Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Inlining Functions

When the compiler inlines a function call, the function's code gets
inserted into the caller's instruction stream

Benefits:
• Reducing overhead of calling a function

– writing the registers and parameters to/from stack
– restore the registers when the function returns.

• Improving performance because the optimizer can procedurally
integrate the called function and can do better optimizations
– sub-expression elimination
– copy propagation

Drawbacks:
• Overuse of inlining can actually make programs slower. Depending

on a function's size, inlining it can cause the code size to increase,
resulting in more cache misses and more pressure on the
instruction cache

• The speed benefits of inline functions tend to diminish as the
function grows in size. At some point the overhead of the function
call becomes small compared to the execution of the function body,
and the benefit is lost.

42

Software & Services Group

Developer Products Division Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Techniques for Inlining Functions

• Compiler Switches

– Increase information provided to the compiler

-ipo, -prof_use (Linux), /Qipo, /Qprof-use (Windows)

– Change Compiler Heuristics

-inline-factor=n (default=100), /Qinline-factor=n

-inline-level=0|1|2, /ob0|1|2

• Inlining source code features

– Microsoft* C/C++

Keywords: inline, __inline, __forceinline

– GCC C/C++

__attribute__((always_inline))

__attribute__((noinline))

43

Software & Services Group

Developer Products Division Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Case study: Include IPO

• Compile the program matrix.c/matrix.f90 with
optimization and with including /Qipo – compare
results:
icl /O3 /Qipo matrix.c /Qopt-report-phase:ipo /o O3_ipo_matrix.exe

icl /O3 /Qipo /QxHost matrix.c /o O3_ipo_xHost_matrix.exe

[Don’t expect much with IPO on this sample (why?)]

• Run and time the executable
O2_novec_matrix.exe >> 2,12 sec.

O3_novec_matrix.exe >> 1,6 sec.

O2_matrix.exe >> 0,98 sec.

O3_matrix.exe >> 0,83 sec.

O3_ipo_matrix.exe >> 0,82 sec.

O3_ipo_xHost_matrix.exe >> 0,75 sec.

44

[Intel® Core™ i7,
4-Core 64-bit,
1,6GHz]

Software & Services Group

Developer Products Division Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Profile-Guided Optimizations (PGO)

• Static analysis leaves many questions
open for the optimizer like:
– How often is x > y
– What is the size of count
– Which code is touched how often

• Use execution-time feedback to guide
(final) optimization

• Enhancements with PGO:
– More accurate branch prediction
– Basic block movement to improve instruction

cache behavior
– Better decision of functions to inline (help IPO)
– Can optimize function ordering
– Switch-statement optimization
– Better vectorization decisions

45

if (x > y)
 do_this();
 else
 do that();

for(i=0; i<count; ++I

do_work();

Software & Services Group

Developer Products Division Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

PGO Usage: Three Step Process

46

Compile + link to add
instrumentation
icc -prof_gen prog.c

Execute instrumented program
prog.exe (on a typical dataset)

Compile + link using feedback
icc -prof_use prog.c

Dynamic profile:
12345678.dyn

Instrumented
executable:
prog.exe

Merged .dyn files:
pgopti.dpi

Step 1

Step 2

Step 3

Optimized executable:
prog.exe

Software & Services Group

Developer Products Division Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Case study: Use PGO

• Compile the program matrix.c/matrix.f90 with
/Qprof-gen /Qprof-use – compare results:
icl /Qprof-gen matrix.c /o pgen_matrix.exe

pgen_matrix.exe [Why does this take so long?]

icl /Qprof-use /O3 /QxHost matrix.c /o puse_matrix.exe

• Run and time the executable
O2_novec_matrix.exe >> 2,12 sec.

O3_novec_matrix.exe >> 1,6 sec.

O2_matrix.exe >> 0,98 sec.

O3_matrix.exe >> 0,83 sec.

O3_ipo_matrix.exe >> 0,82 sec.

O3_ipo_xHost_matrix.exe >> 0,75 sec.

puse_matrix.exe >> 0,32 sec.

47

[Intel® Core™ i7,
4-Core 64-bit,
1,6GHz]

Software & Services Group

Developer Products Division Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Automatic Compiler Vectorization
Processor Specific Optimizations

• Compiler vectorizer switch:
/Qvec (Windows*), -vec (Linux*)
– Implicitly included with optimization switch /O2, -O2 or higher
– Switch off autovectorizer explicitly with /Qvec-, -vec-
– Automatically generates vector instructions using the multiple SIMD instruction set extensions

SSE/SSE2/SSE3/SSSE3/SSE4.x/AVX
– Operates at once with one instruction on, e.g.:

4 float / 2 double values or 4 x 32-bit / 8 x 16-bit integers

• Processor specific extensions switches:
 Default switch is –msse2 (Windows), /arch:SSE2 (Linux)

– Activated implicitly with optimization switch /O2, -O2 or higher
 /arch:<extension> (Microsoft compatible), -m<extension> (Linux*, Mac OS* X)

– No Intel processor check (but with sse4.x)
– No Intel specific optimizations

 /Qx<SIMDextension> , -x<SIMDextension>
– Code generation for specific target hardware
– Enables additional extensions for Intel processors

 /Qax<SIMDextension> , -ax<SIMDextension>
– Code generation for specific target hardware and extensions for Intel processors
– Autodispatch switch a for generating additional default code path

 Special switch /QxHost, -xHost
– Automatically gives access to all the latest features of the processor you are working on

• –mtune=<ARCH> option on Linux*/OS X* to specify cpu targeting without generating

instructions exclusive to that cpu

48

Software & Services Group

Developer Products Division Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Processor-specific Compiler Switches

 Windows Linux

/Qxsse2 -xsse2

/Qxsse3 -xsse3

/Qxssse3 -xssse3

/Qxsse4.1 -xsse4.1

/Qxsse4.2 -xsse4.2

/QxAVX -xavx

/QxHOST -xHost

/Qxsse3_atom -xsse3_ATOM

 Windows Linux

/arch:IA32 -mia32

/arch:sse2
-msse2
(default!)

/arch:sse3 -msse3

/arch:ssse3 -mssse3

 (Intel® 64 and IA-32)

• Implies an Intel CPU ID check
• Runtime message if try to run

on unsupported processor

• No CPU ID check (but with sse4.x)

• Intel and non-Intel processors

• Illegal instruction error if run on
unsupported processor

• At least Pentium4 required

49

Software & Services Group

Developer Products Division Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

SIMD Types in Processors from Intel [1]

X4

Y4

X4opY4

X3

Y3

X3opY3

X2

Y2

X2opY2

X1

Y1

X1opY1

0 64

X4

Y4

X4opY4

X3

Y3

X3opY3

X2

Y2

X2opY2

X1

Y1

X1opY1

0 128

MMX™
Vector size: 64bit
Data types: 8, 16 and 32 bit integers
VL: 2,4,8
For sample on the left: Xi, Yi 16 bit
integers

Intel® SSE
Vector size: 128bit
Data types:
 8,16,32,64 bit integers
 32 and 64bit floats
VL: 2,4,8,16
Sample: Xi, Yi bit 32 int / float

50

Software & Services Group

Developer Products Division Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

SIMD Types in Processors from Intel [2]

Intel® AVX
Vector size: 256bit
Data types: 32 and 64 bit floats
VL: 4, 8, 16
Sample: Xi, Yi 32 bit int or float

Intel® MIC
Vector size: 512bit
Data types:
 32 and 64 bit integers
 32 and 64bit floats
 (some support for
 16 bits floats)
VL: 8,16
Sample: 32 bit float

X4

Y4

X4opY4

X3

Y3

X3opY3

X2

Y2

X2opY2

X1

Y1

X1opY1

0 127

X8

Y8

X8opY8

X7

Y7

X7opY7

X6

Y6

X6opY6

X5

Y5

X5opY5

128 255

X4

Y4

…

X3

Y3

…

X2

Y2

…

X1

Y1

X1opY1

0

X8

Y8

X7

Y7

X6

Y6

...

X5

Y5

…

255

…

…

…

…

…

…

…

…

…

X9

Y9

X16

Y16

X16opY16

…

…

…

...

…

…

…

…

…

511

X9opY9 X8opY8 …

51

Software & Services Group

Developer Products Division Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Auto-Vectorization
SIMD – Single Instruction Multiple Data

• Scalar mode

– one instruction produces

one result

• SIMD processing
– with SSE or AVX instructions

– one instruction can produce multiple

results

+
a[i]

b[i]

c[i]

+

c[i+7] c[i+6] c[i+5] c[i+4] c[i+3] c[i+2] c[i+1] c[i]

b[i+7] b[i+6] b[i+5] b[i+4] b[i+3] b[i+2] b[i+1] b[i]

a[i+7] a[i+6] a[i+5] a[i+4] a[i+3] a[i+2] a[i+1] a[i]

for (i=0;i<=MAX;i++)

 c[i]=a[i]+b[i];

52

a

b

c

+

Software & Services Group

Developer Products Division Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Scalar and Packed SSE Instructions

The “vector” form of SSE instructions operating on multiple
data elements simultaneously are called packed – thus
vectorized SSE code means use of packed instructions

• Most of these instructions have a scalar version too operating
only one element only

X4 X3 X2 X1addY1

X4 X3 X2 X1

Y4 Y3 Y2 Y1

X4opY4 X3opY3 X2opY2 X1addY1

X4 X3 X2 X1

Y4 Y3 Y2 Y1

addss Scalar Single-FP Add

 single precision FP data

 scalar execution mode

addps Packed Single-FP Add

 single precision FP data

 packed execution mode

53

Software & Services Group

Developer Products Division Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

References

[1] Aart Bik: “The Software Vectorization Handbook”

– http://www.intel.com/intelpress/sum_vmmx.htm

[2] Randy Allen, Ken Kennedy: “Optimizing
Compilers for Modern Architectures: A
Dependence-based Approach”

[3] Steven S. Muchnik, “Advanced Compiler Design
and Implementation”

[4] Intel Software Forums, Knowledge Base, White
Papers, Tools Support - see http://software.intel.com

Sample Articles :
• software.intel.com/en-us/articles/a-guide-to-auto-vectorization-with-

intel-c-compilers/

• software.intel.com/en-us/articles/requirements-for-vectorizable-loops/

• software.intel.com/en-us/articles/performance-tools-for-software-
developers-intel-compiler-options-for-sse-generation-and-processor-
specific-optimizations/

 54

http://www.intel.com/intelpress/sum_vmmx.htm
http://software.intel.com/
http://software.intel.com/en-us/articles/a-guide-to-auto-vectorization-with-intel-c-compilers/
http://software.intel.com/en-us/articles/a-guide-to-auto-vectorization-with-intel-c-compilers/
http://software.intel.com/en-us/articles/a-guide-to-auto-vectorization-with-intel-c-compilers/
http://software.intel.com/en-us/articles/a-guide-to-auto-vectorization-with-intel-c-compilers/
http://software.intel.com/en-us/articles/a-guide-to-auto-vectorization-with-intel-c-compilers/
http://software.intel.com/en-us/articles/a-guide-to-auto-vectorization-with-intel-c-compilers/
http://software.intel.com/en-us/articles/a-guide-to-auto-vectorization-with-intel-c-compilers/
http://software.intel.com/en-us/articles/a-guide-to-auto-vectorization-with-intel-c-compilers/
http://software.intel.com/en-us/articles/a-guide-to-auto-vectorization-with-intel-c-compilers/
http://software.intel.com/en-us/articles/a-guide-to-auto-vectorization-with-intel-c-compilers/
http://software.intel.com/en-us/articles/a-guide-to-auto-vectorization-with-intel-c-compilers/
http://software.intel.com/en-us/articles/a-guide-to-auto-vectorization-with-intel-c-compilers/
http://software.intel.com/en-us/articles/a-guide-to-auto-vectorization-with-intel-c-compilers/
http://software.intel.com/en-us/articles/a-guide-to-auto-vectorization-with-intel-c-compilers/
http://software.intel.com/en-us/articles/a-guide-to-auto-vectorization-with-intel-c-compilers/
http://software.intel.com/en-us/articles/a-guide-to-auto-vectorization-with-intel-c-compilers/
http://software.intel.com/en-us/articles/a-guide-to-auto-vectorization-with-intel-c-compilers/
http://software.intel.com/en-us/articles/a-guide-to-auto-vectorization-with-intel-c-compilers/
http://software.intel.com/en-us/articles/a-guide-to-auto-vectorization-with-intel-c-compilers/
http://software.intel.com/en-us/articles/performance-tools-for-software-developers
http://software.intel.com/en-us/articles/requirements-for-vectorizable-loops/
http://software.intel.com/en-us/articles/requirements-for-vectorizable-loops/
http://software.intel.com/en-us/articles/requirements-for-vectorizable-loops/
http://software.intel.com/en-us/articles/requirements-for-vectorizable-loops/
http://software.intel.com/en-us/articles/requirements-for-vectorizable-loops/
http://software.intel.com/en-us/articles/requirements-for-vectorizable-loops/
http://software.intel.com/en-us/articles/requirements-for-vectorizable-loops/
http://software.intel.com/en-us/articles/requirements-for-vectorizable-loops/
http://software.intel.com/en-us/articles/requirements-for-vectorizable-loops/
http://software.intel.com/en-us/articles/performance-tools-for-software-developers
http://software.intel.com/en-us/articles/performance-tools-for-software-developers
http://software.intel.com/en-us/articles/performance-tools-for-software-developers
http://software.intel.com/en-us/articles/performance-tools-for-software-developers
http://software.intel.com/en-us/articles/performance-tools-for-software-developers
http://software.intel.com/en-us/articles/performance-tools-for-software-developers
http://software.intel.com/en-us/articles/performance-tools-for-software-developers
http://software.intel.com/en-us/articles/performance-tools-for-software-developers
http://software.intel.com/en-us/articles/performance-tools-for-software-developers
http://software.intel.com/en-us/articles/performance-tools-for-software-developers
http://software.intel.com/en-us/articles/performance-tools-for-software-developers
http://software.intel.com/en-us/articles/performance-tools-for-software-developers
http://software.intel.com/en-us/articles/performance-tools-for-software-developers
http://software.intel.com/en-us/articles/performance-tools-for-software-developers
http://software.intel.com/en-us/articles/performance-tools-for-software-developers
http://software.intel.com/en-us/articles/performance-tools-for-software-developers
http://software.intel.com/en-us/articles/performance-tools-for-software-developers
http://software.intel.com/en-us/articles/performance-tools-for-software-developers
http://software.intel.com/en-us/articles/performance-tools-for-software-developers
http://software.intel.com/en-us/articles/performance-tools-for-software-developers
http://software.intel.com/en-us/articles/performance-tools-for-software-developers
http://software.intel.com/en-us/articles/performance-tools-for-software-developers
http://software.intel.com/en-us/articles/performance-tools-for-software-developers
http://software.intel.com/en-us/articles/performance-tools-for-software-developers
http://software.intel.com/en-us/articles/performance-tools-for-software-developers
http://software.intel.com/en-us/articles/performance-tools-for-software-developers
http://software.intel.com/en-us/articles/performance-tools-for-software-developers
http://software.intel.com/en-us/articles/performance-tools-for-software-developers
http://software.intel.com/en-us/articles/performance-tools-for-software-developers
http://software.intel.com/en-us/articles/performance-tools-for-software-developers
http://software.intel.com/en-us/articles/performance-tools-for-software-developers
http://software.intel.com/en-us/articles/performance-tools-for-software-developers
http://software.intel.com/en-us/articles/performance-tools-for-software-developers

Software & Services Group

Developer Products Division Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Compiler Reports – Vectorization Report

Compiler switch:
 /Qvec-report<n> (Windows)

 -vec-report<n> (Linux)

Set diagnostic level dumped to stdout

n=0: No diagnostic information
n=1: (Default) Loops successfully vectorized
n=2: Loops not vectorized – and the reason why not
n=3: Adds dependency Information
n=4: Reports only non-vectorized loops
n=5: Reports only non-vectorized loops and adds dependency info

• Note:
For Linux, –opt_report_phase hpo provides additional diagnostic

information for vectorization

55

Software & Services Group

Developer Products Division Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Case study: Use auto-vectorizer

• Compile the program matrix.c/matrix.f90 with
optimization /O[2|3], vectorizer and create report:
icl /O2 matrix.c /Qvec-report2 /o O2_matrix.exe

icl /O3 matrix.c /Qvec-report2 /o O3_matrix.exe

icl /O3 /QxHost /Qvec-report2 matrix.c /o O3_xHost_matrix.exe

icl /fast matrix.c /o fast_matrix.exe

[Do all loops vectorize? Is there room for improvement?]

• Run and time the executable
noopt_matrix.exe >> 30,25 sec.

O1_matrix.exe >> 9,6 sec.

O2_novec_matrix.exe >> 2,12 sec.

O3_novec_matrix.exe >> 1,6 sec.

O2_matrix.exe >> 0,98 sec.

O3_matrix.exe >> 0,83 sec.

O3_xHost_matrix.exe >> 0,78 sec.

fast_matrix.exe >> 0,78 sec.

56

[Intel® Core™ i7,
4-Core 64-bit,
1,6GHz]

Software & Services Group

Developer Products Division Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Compiling for Intel® AVX

•Compile with –xavx (/Qxavx on Windows*)

– Vectorization works just as for SSE

•More FP loops can be vectorized than with SSE

– Individually masked data elements

– More powerful data rearrangement instructions

•Can create both SSE and AVX code paths in one
binary

•Switches Linux: -axavx Windows: /Qaxavx

– use additional –x (/Qx) switches to modify the
default SSE code path; e.g –axavx –xsse4.2 to target
SSE4.2 (“Nehalem”) and AVX (“SandyBridge”)

57

Software & Services Group

Developer Products Division Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

User-Mandated Vectorization

 User-mandated vectorization is based on a new SIMD
Directive (or “pragma”)

•The SIMD directive provides additional information to compiler to
enable vectorization of loops (at this time only inner loop)

•Supplements automatic vectorization but differently to what
traditional directives like IVDEP, VECTOR ALWAYS do, the SIMD
directive is more a command than a hint or an assertion: The
compiler heuristics are completely overwritten as long as a clear
logical fault is not being introduced

Relationship similar to OpenMP versus automatic parallelization:

User Mandated Vectorization OpenMP

Pure Automatic Vectorization Automatic Parallelization

58

Software & Services Group

Developer Products Division Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Positioning of SIMD Vectorization
A Cilk Plus Feature

ASM code (addps)

Vector intrinsic (mm_add_ps())

SIMD intrinsic class (F32vec4 add)

User Mandated Vectorization

(SIMD Directive)

Auto vectorization hints (#pragma ivdep)

Fully automatic vectorization

Programmer control

Ease of use

59

Software & Services Group

Developer Products Division Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

SIMD Directive Notation

C/C++: #pragma simd [clause [,clause] …]

Fortran: !DIR$ SIMD [clause [,clause] …]

Without any clause, the directive enforces vectorization of the
(innermost) loop

Sample:

void add_fl(float *a, float *b, float *c, float *d, float *e, int n)

{

 #pragma simd

 for (int i=0; i<n; i++)

 a[i] = a[i] + b[i] + c[i] + d[i] + e[i];

}

Without SIMD directive, vectorization will fail since there are too many
pointer references to do a run-time check for overlapping (compiler
heuristic)

60

Software & Services Group

Developer Products Division Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Clauses of SIMD Directive

vectorlength(n1 [,n2] …)

– n1, n2, … must be 2,4,8 or 16: The compiler can assume a
vectorization for a vector length of n1, n2, … to be save

private(v1, v2, …)

– variables private to each iteration; initial value is broadcast to all
private instances, and the last value is copied out from the last
iteration instance.

linear(v1:step1, v2:step2, …)

– for every iteration of original scalar loop, v1 is incremented by
step1, … etc. Therefore it is incremented by step1 *(vector length)
for the vectorized loop.

reduction(operator:v1, v2, …)

– v1 etc are reduction variables for operation “operator”

[no]assert

– reaction in case vectorization fails: Print a warning only (noassert,
the default) or treat failure as error and stop compilation

61

Software & Services Group

Developer Products Division Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Sample: SIMD Directive Vectorlength Clause

Due to the overlapping nature of array accesses from the different call

sites, it might not be semantically correct to use restrict keyword or

IVDEP directive (there are dependencies between iterations for one

call)

But it might be true for all calls, that e.g 4 consecutive iterations can be

executed in parallel without violating any dependencies

Void foo(float *a, float *b, float *c, int n)

{

 for (int k=0; k<n; k++) c[k] = a[k] + b[k];

}

void foo(float *a, float *b, float *c, int n)

{

 #pragma simd vectorlength(4)

 for (int k=0; k<n; k++) c[k] = a[k] + b[k];

}

62

Software & Services Group

Developer Products Division Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Auto-Parallelization

• Compiler automatically translates portions of serial code into
equivalent multithreaded code with using these options:

 /Qparallel, -parallel

• The auto-parallelizer analyzes the dataflow of loops and
generates multithreaded code for those loops which can
safely and efficiently be executed in parallel.

• The auto-parallelizer report can provide information about

program sections that could be parallelized by the
compiler. Compiler switch:

 /Qpar-report:0|1|2|3

 -par-report0|1|2|3

 ‚0‘ is report disabled, ‚3‘ maximum diagnostics level

63

Software & Services Group

Developer Products Division Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Case study: Auto-parallelization

• Compile the program matrix.c/matrix.f90 with /Qparallel

/Qpar-report2 with and without additional

vectorization/optimizations:
icl /Qparallel /Qpar-report2 /Qvec- /o par_novec_matrix.exe

icl /Qparallel /Qpar-report2 /o par_matrix.exe

icl /Qparallel /Qpar-report2 /O3 /Qvec-report2 /Qipo /QxHost /o

par_vec_matrix.exe

icl /O3 /Qparallel /Qprof-use /O3 /Qipo /QxHost /o

par_vec_puse_matrix.exe

[Examine the parallel report. Is the program well parallelized? What are the possible
pitfalls with thread-level parallelization?]

• Run and time the executable
O3_ipo_xHost_matrix.exe >> 0,75 sec.

puse_matrix.exe >> 0,32 sec.

par_novec_matrix.exe >> 0,90 sec.

par_matrix.exe >> 0,35 sec.

par_vec_matrix.exe >> 0,35 sec.

par_vec_puse_matrix.exe >> 0,12 sec.

64

[Intel® Core™ i7,
4-Core 64-bit,
1,6GHz]

Software & Services Group

Developer Products Division Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Auto-Parallelization vs. Auto-Vectorization

65

Explain difference

- Auto-vectorization which is DLP (Data Level Parallelization)
uses wide registers (SSE) for operation of multiple instructions.

- Auto-parallelization which is TLP (Thread Level
Parallelization) uses processor cores (and hardware threads)
for parallelization of serial code.

- Possible pitfalls in auto-parallelization: Concurrent access by
more threads to the same memory locations (data race!).

Software & Services Group

Developer Products Division Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Guided Automatic Parallelization (GAP)

• Feature of the C++/Fortran Compiler that offers
advice and, when correctly applied, results in auto-
vectorization or auto-parallelization of serial code.
– Compiler switch /Qguide in parallel with /O2 or higher

gives advise for auto-vectorization

– Compiler switch /Qguide in parallel with /Qparallel or

higher gives advise for auto-parallelization

• Compiler runs in advisor mode
– Compiler does not generate ANY code with /Qguide, -
guide – vectorized or not.

66

Software & Services Group

Developer Products Division Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Intel® Guided Auto Parallelism (GAP)
Let the Compiler Tell You What it Needs

• Motivation
– Effective, simplify way to add parallelism to your applications

– Use built-in compiler technology to speed parallelism development

• What is GAP?
– Compiler-based analyzer that provides guidance to developers to change

code so it can be compiled to automatically optimize code through
vectorization, parallelization, or data transformation

– Built upon existing auto-vectorization and auto-parallelization technology

• GAP does not
– Analyze code and find hotspots for threading (see Advisor)

– Verify threading correctness (use Inspector, Inspector XE)

– Do any performance/hotspot analysis (use Amplifier, VTune Amplifier XE)

Developer Must Verify Semantics of GAP Recommendations

67

Software & Services Group

Developer Products Division Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

GAP – How it Works (Windows)
• Windows – right-click or Project Properties

– GAP analysis appears in Output window

68

Right-click file or project,
Fortran Composer pop-up

Choose single-file
or whole project

OR you can use the
Project Properties,
Fortran, Diagnostics
property page

Software & Services Group

Developer Products Division Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Vectorization Example [1]

void f(int n, float *x, float *y, float *z, float *d1, float *d2)

{

 for (int i = 0; i < n; i++)

 z[i] = x[i] + y[i] – (d1[i]*d2[i]);

}

GAP Message:

g.c(6): remark #30536: (LOOP) Add -Qno-alias-args option for better type-
based disambiguation analysis by the compiler, if appropriate (the
option will apply for the entire compilation). This will improve
optimizations such as vectorization for the loop at line 6. [VERIFY] Make
sure that the semantics of this option is obeyed for the entire
compilation. [ALTERNATIVE] Another way to get the same effect is to
add the "restrict" keyword to each pointer-typed formal parameter of
the routine "f". This allows optimizations such as vectorization to be
applied to the loop at line 6. [VERIFY] Make sure that semantics of the
"restrict" pointer qualifier is satisfied: in the routine, all data accessed
through the pointer must not be accessed through any other

The compiler guides the user on source-change and on what pragma to insert

and on how to determine whether that pragma is correct for this case

69

Software & Services Group

Developer Products Division Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Vectorization Example [2]

void mul(NetEnv* ne, Vector* rslt

 Vector* den, Vector* flux1,

 Vector* flux2, Vector* num

{

 float *r, *d, *n, *s1, *s2;

 int i;

 r=rslt->data;

 d=den->data;

 n=num->data;

 s1=flux1->data;

 s2=flux2->data;

 for (i = 0; i < ne->len; ++i)

 r[i] = s1[i]*s2[i] +

n[i]*d[i];

}

GAP Messages (simplified):

1. “Use a local variable to store
the upper-bound of loop at
line 29 (variable:ne->len) if
the upper-bound does not
change during execution of
the loop”

2. “Use “#pragma ivdep" to help
vectorize the loop at line 29,
if these arrays in the loop do
not have cross-iteration
dependencies: r, s1, s2, n, d”

-> Upon recompilation, the loop
will be vectorized

70

Software & Services Group

Developer Products Division Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Parallelization Example

#define N 10000

double A[N], B[N];

int bar(int);

void foo(){

 int i;

 for (i=0;i<N;i++)

 A[i] = B[i] * bar(i);

}

GAP Message on Windows:

funcall.c(6): remark #30528: (PAR) Add "__declspec(const)" to the

declaration of routine "bar" in order to parallelize the loop at

line 12. Alternatively, adding "__declspec(concurrency_safe

(profitable))" achieves a similar effect.

[VERIFY] Make sure that the routine satisfies the semantics of this

declaration.

[ALTERNATIVE] Yet another way to help the loop being parallelized is

to inline the routine with "#pragma forceinline recursive". This

method does not guarantee parallelization.

Compiler invocation:

{L}: icc –c funcall.c

 –parallel

 –guide

{W}: icl /c funcall.c

 /Qparallel

 /Qguide

71

Software & Services Group

Developer Products Division Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Data Transformation Example

struct S3 {

 int a;

 int b; // hot

 double c[100];

 struct S2 *s2_ptr;

 int d; int e;

 struct S1 *s1_ptr;

 char *c_p;

 int f; // hot

};

peel.c(22): remark #30756: (DTRANS) Splitting the structure 'S3' into

two parts will improve data locality and is highly recommended.

Frequently accessed fields are 'b, f'; performance may improve by

putting these fields into one structure and the remaining fields

into another structure. Alternatively, performance may also improve

by reordering the fields of the structure. Suggested field order:'b,

f, s2_ptr, s1_ptr, a, c, d, e, c_p'. [VERIFY] The suggestion is

based on the field references in current compilation …

…

for (ii = 0; ii < N; ii++){

 sp->b = ii;

 sp->f = ii + 1;

 sp++;

}

…

72

Software & Services Group

Developer Products Division Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Compiler Floating Point Model

The Floating Point options allow to control the optimizations on
floating-point data. These options can be used to tune the
performance, level of accuracy or result consistency.

Accuracy
 Produce results that are “close” to the correct value

–Measured in relative error, possibly ulps (units in the last place)

Reproducibility
 Produce consistent results

–From one run to the next
–From one set of build options to another
–From one compiler to another
–From one platform to another

Performance
 Produce the most efficient code possible

–Default, primary goal of Intel® Compilers

These objectives usually conflict! Wise use of compiler
options lets you control the tradeoffs.

73

Software & Services Group

Developer Products Division Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Compiler Floating-Point Model

The Floating-Point Compiler Switch

 –fp-model keyword (Linux*, Mac OS* X)

 /fp:keyword (Windows*)

Lets you choose the FP semantics at a coarse granularity and
specify the compiler rules for

– Value safety
– FP expression evaluation
– FPU environment access
– Precise FP exceptions
– FP contractions
– Abrupt underflow (flush to zero)

– Denormals are set to zero
– May improve performance, esp. if HW doesn‘t

support denormals

74

Software & Services Group

Developer Products Division Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Floating-Point Keywords

Controls consistency of floating point results by restricting certain
optimizations. Values for keywords are

– fast[=1|2]; default is fast=1

– Allows „value-unsafe“ optimizations (=default)

– Allows aggressive optimizations at a slight cost in accuracy
or consistency.

– Some additional approximations allowed with fast=2

– precise

– Enables only value-safe optimizations on floating point code.

– source

– Implies precise and enables intermediates to be computed
in source precision.

– Source is the recommended form for the majority of
situations on processors supporting Intel® 64 and IA-32
platforms when SSE are enabled with /QxSSE2 or higher.

75

Software & Services Group

Developer Products Division Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Floating-Point Keywords (2)

– double

– Implies precise and enables intermediates to be computed
in double or extended precision.

– Not avaliable in Intel® Fortran Compilers

– extended

– Rounds intermediate results to 64-bit (extended) precision

– Enables value safe optimization

– except

– Enables floating point exception semantics

– strict

– Strictest mode of operation, enables both the precise and
except options and disables contractions (i.e., precise +
strict + disable fma)

76

Software & Services Group

Developer Products Division Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

The –fp-model<key> Switch

77

Key
Value

Safety

Expression

Evaluation

FPU

Environ.

Access

Precise FP

Exceptions

FP

contract

precise

source

double

extended

Safe

Varies

Source

Double

Extended

No No Yes

strict Safe Varies Yes Yes No

fast=1

(default)
Unsafe Unknown No No Yes

fast=2
Very

Unsafe
Unknown No No Yes

except

except-

*/**

*

*

*

*

*

Yes

No

*

*

* These modes are unaffected. –fp-model except[-] only affects the precise FP exceptions

mode.

** It is illegal to specify –fp-model except in an unsafe value safety mode.

Software & Services Group

Developer Products Division Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Loop Profiler
Identify Time Consuming Loops/Functions

• Compiler switch:
/Qprofile-functions, -profile-functions

– Insert instrumentation calls on function entry and exit
points to collect the cycles spent within the function.

• Compiler switch:
/Qprofile-loops=<inner|outer|all>,

-profile-loops= <inner|outer|all>

– Insert instrumentation calls for function entry and exit points as well as
the instrumentation before and after instrument able loops of the type
listed as the option’s argument.

• Loop Profiler switches trigger generation of text
(.dump) and XML (.xml) output files
– Invocation of XML viewer on command line:

java -jar loopprofviewer.jar <xml datafile>

78

Software & Services Group

Developer Products Division Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Loop Profiler Text Dump (.dump file)

79

Software & Services Group

Developer Products Division Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Loop Profiler Data Viewer GUI (copy from sl. 46)

80

Function Profile View

Loop Profile View

Column headers allow selection

to control sort criteria

independently for function and

loop table

Menu to allow user to enable

filtering or displaying the

source code

Software & Services Group

Developer Products Division Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Static Security Analysis – (SSA)

81

Enhanced Application Security
Catch defects early in lifecycle

• Detects over 250 different kinds of errors and
security risks, such as:
- Buffer overruns and uninitialized variables
- Heap corruption and bad pointer usage
- Unchecked use of input data
- Error prone usage of libraries and language features
- Arithmetic overflow and divide by zero

• True global analysis crossing subroutine and
file boundaries

• Easy set up and usability, delivers immediate
results

• Intuitive GUI & Command Line interface for
Windows* and Linux

• Displays problems and associated source code

• Tracks state associated with issues, even as
source evolves and line numbers change

• Provides filters and sorting to organize results
and reduce clutter

 C, C++, Fortran for Windows* and Linux support

Software & Services Group

Developer Products Division Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Static Security Analysis (SSA)

• SSA uses the compiler technology to generate analysis

information

– Compiler switch:

 /Qdiag-enable:sc{[1|2|3]}

 -diag-enable sc{[1|2|3]}

• Viewing SSA analysis data requires the Intel® Inspector XE to

manage the analysis

– Inspector automatically started after compilation if installed on the same computer

– SSA results can be viewed on different computer where the Inspector is available

– Data collection using compiler front end

– Data filtering

– Display of results

– Interactive source vie

NOTE: Using SSA requires a Parallel Studio XE license!

82

Software & Services Group

Developer Products Division Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners. 83

SSA Results - Evaluation with Intel Inspector XE

Software & Services Group

Developer Products Division Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Pointer Checker
Requires a Studio XE License!

84

• A key feature of Intel® Parallel Studio XE 2013

• Catches out-of-bounds memory accesses through pointers
 Identifies and reports before memory corruption occurs!
 Buffer overruns /overflows
 Dangling Pointers

o memory accesses through freed pointers

• Designed for use during application debugging and testing

• Security benefits from catching vulnerabilities prior to
 product release.

• Enabled via compile time switches.

• User API allows control over what happens when a

 violation is detected

• Implemented mostly in a runtime library which is
automatically linked in by the compiler

• No change to structure layout or ABIs

Key Benefit: Enable Incrementally

Pointer Checker can be enabled on a single file, group of files or all files. Pointer
Checker enabled code and non-enabled code can coexist!

Software & Services Group

Developer Products Division Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Pointer Checker - Why?
 C/C++ pointers have well defined semantics for
memory range access:

Pointer Checker does bounds checking!

Buffer overflow/overrun anomaly:
• Violation of memory safety
• Data corruption
• Erratic program behavior
• Breach of system security
• Basis of many software vulnerabilities

// Pointer Bounds

p = malloc(size);

// Lower Bound(p) is (char *)p

// Upper Bound(p) is lower_bound(p) + size - 1

char *buf = malloc(5);

for (int i=0; i<=5;i++)

{

 buf[i] = ‘A’ + i;

}

85

Software & Services Group

Developer Products Division Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Implementation Details
 • Each pointer variable has bounds associated with it.

– Bounds for p = malloc(size) are: p and p+size-1

– Bounds for &v are: &v and &v+sizeof(v)-1

– Bounds for &a[i] are: the bounds of &a. A pointer to an array
element is allowed to traverse the entire array.

– Bounds of &a.b are: &a+offset(b) and &a+offset(b) + sizeof(b)-1

• The pointer is allowed to go out of bounds, only memory accesses
are checked to make sure the address is in bounds.

• Bounds for pointer variables in memory are kept in memory in a
separate location mapped via the address of the pointer.

• Bounds for pointers in registers are in registers.

86

Software & Services Group

Developer Products Division Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Enabling Pointer Checker
Getting started is easy…

Meet requirements:

Compile and build your application with:

 -check-pointers= [none | write | rw] (Linux* OS)

 /Qcheck-pointers:[none | write | rw] (Windows* OS)

–Pointer Checker is off by default

–Checks all indirect accesses through pointers and
accesses to arrays

One compiler switch enables Pointer Checker!

Supported
Languages

Supported
Architecture

Supported
Platforms

Supported
Processor

C, C++ IA-32, Intel® 64 Linux*, Windows* Intel® Pentium® 4
processor or later, or
compatible processor

87

Software & Services Group

Developer Products Division Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

• Compile with Pointer Checker Enabling switch for “r” or“rw”.
• Execute; Check for out-of-bounds violations (OOB) and if
 OOB is true or false positive.

Sample Program
%cat main.c

1 #include<stdio.h>

2 #include<malloc.h>

3 #include "chkp.h"

4

5 int main () {

6 #ifdef REPORT

7

__chkp_report_control(__CHKP_REPORT_TRACE_LOG,

0);

8 #endif

9 char *buf = malloc(4);

10 int i;

11 for (i=0; i<=4; i++) {

12 printf(" %c",buf[i]);

13 }

14 for (i=0; i<=4; i++) {

15 buf[i] = 'A' + i;

16 printf(" %c",buf[i]);

17 }

18 printf ("\n");

19 return 0;

20 }

Pointer Checker Enabling – Check Bounds
• Compile without Pointer Checker enabling switch:
 % icc main.c -g;./a.out

 A B C D E

• Compile with Pointer Checker enabling option:
% icc main.c -DREPORT -check-pointers=write -

rdynamic -g;./a.out

CHKP: Bounds check error

 lb: 0xe67010

 ub: 0xe67013

 addr: 0xe67014

 end: 0xe67014

size: 1

Traceback is:
./a.out(main+0x21f) [0x402de7] in file main1.c line

15

 /lib64/libc.so.6(__libc_start_main+0xf4)

[0x35e8a1d994] in file unknown line 0

…

A B C D E

CHKP Total number of bounds violations: 1

%

Enabling Pointer Checker [cont]

88

Software & Services Group

Developer Products Division Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Pointer Checker – Detailed Control

Model Description

Header File Defines intrinsics and reporting functions (chkp.h)

Compiler
Options

-check-pointers (/Qcheck-pointers) Enables pointer checker and adds
associated libraries

-check-pointers-dangling (/Q-check-pointers-
dangling)

Enables checking for dangling pointer
references

-check-pointers-undimensioned (Qcheck-
pointers-undimensioned)

Enables the checking of bounds for arrays
without dimensions

Intrinsics void * __chkp_lower_bound(void **) Returns the lower bound associated with
the pointer

void * __chkp_upper_bound(void **) Returns the upper bound associated with
the pointer

void * __chkp_kill_bounds(void *p) Removes the bounds information to allow
the pointer in the argument to access all
memory.

void * __chkp_make_bounds(void *p, size_t
size)

Creates new bounds information within
the allocated memory address for the
pointer in the argument

Reporting API
(Function/Enu
meration)

void
__chkp_report_control(__chkp_report_option_
t option, __chkp_callback_t callback)

Determines how errors are reported

__chkp_report_option_t
{Enumerations: __CHKP_REPORT_LOG,
__CHKP_REPORT_TRACEBACK,
__CHKP_REPORT_CALLBACK,
__CHKP_REPORT_BPT,
__CHKP_REPORT_TERM}

Controls how out-of-bounds error are
reported. Enumerations in header file

RTL Functions Provides checking on C run-time library functions that manipulate memory through pointers

89

Software & Services Group

Developer Products Division Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Check for Dangling Pointers

• Compiler uses a wrapper for free()
and
 delete operator.

Option:
 -check-pointers-dangling=[none |
heap | stack | all] (Linux* OS)

 /Qcheck-pointers-dangling:[none |

heap | stack | all] (Windows* OS)

Check Arrays (with Bounds)/
Undimensioned Arrays

• Check arrays without dimensions:

-[no-]check-pointers-undimensioned

(Linux* OS)

/Qcheck-pointers-undimensioned[-]

(Windows* OS)

Check Runtime Library (RTL) functions /

Intrinsics

Wrapper libraries:

 libchkpwrap.a> [Linux*]

 libchkpwrap.lib [Windows*]

Intrinsics:

Write own wrappers for RTL functions

Work with Enabled and Non-Enabled code

Check and create correct bounds

Intrinsics - Example

extern void *wrap_malloc(size_t bytes) {

 // code

 ….

 (void *) p = my_realloc(p, old_size +

100);

 p = __chkp_kill_bounds(p);

 p = (void*)__chkp_make_bounds(p,

old_size + 100);

 return p;

}

Pointer Checker – Samples for Control

90

Software & Services Group

Developer Products Division Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Performance Overhead

• Runtime cost is relatively high, about 2x to 5x
execution time effect.

• Code size increase from 20% to a very large
increase (>100% plus), depending on the
application.

• Pointer Checker is seen as a debug feature

• Deployed applications are expected to have
Pointer Checker disabled

• Security benefits from catching vulnerabilities
prior to product release is the trade-off.

Software & Services Group

Developer Products Division Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Coding Security Support from Intel

11/4/2013 92

Feature Required Tools

Switches of Intel® Compiler to control
diagnostics: Remarks, Warnings and Errors

Compiler

Code Coverage and Test Prioritization Compiler

Static Verifier (Static Source Code
Checking)

Compiler, Inspector XE
– license of IPS-XE
required

Switches of Intel® Compilers for run time
checking (like variables not initialized,
interface in FORTRAN, …)

Compiler

Intel® Inspector XE memory checking Inspector XE

Intel® Inspector XE thread checking Inspector XE

Pointer Checking Compiler, license of
IPS-XE required

Data race detection of Intel® Debugger
and Intel-extended GDB

Compiler, Debugger

Software & Services Group

Developer Products Division Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Is Pointer Checking Redundant then ?

93

1. Investment and intrusiveness is different for all
test methods
• Inspector XE memory checking can extend run time

by a factor far above 50 !

2. Pointer Checking can discover issues not found
by other methods

void s(char *buf)

for (int i=0; i<=5;i++)

{

 buf[i] = ‘A’ + i;

}

int main()

{

 char buf[5];

 char *p=buf;

 s(p);

}

• Static Verifier will detect this
only in case both modules are
compiled in one step

• Inspector XE memory checking
will miss the fault since
memory is not from heap

Software & Services Group

Developer Products Division Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Intel® Fortran Composer XE
Coarray Fortran (CAF)

• Simple extension to Fortran to make Fortran into a
robust and efficient parallel programming language

• Single-Process-Multiple-Data programming model
(SPMD).

– Single program is replicated a fixed number of times

– Each program instance has it’s own set of data objects –
called an “IMAGE”

– Each image executes asynchronously and normal Fortran
rules apply

– Extensions to normal Fortran array syntax to allow images
to reference data in other image(s)

• Part of the Fortran 2008 standard

94

Software & Services Group

Developer Products Division Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Compilation

•ifort –coarray !Linux*

•ifort /Qcoarray !Windows*
along with other options. Enables compiling for CAF. By
default, executable will use as many cores (real and
hyperthreaded) as are available.

ifort –coarray –coarray-num-procs=x

ifort /Qcoarray /Qcoarray-num-procs=x
along with other options. Sets number of images to “x”. This
option will soon change to –coarray-num-images=x, in our
next update hopefully. See the RELEASE NOTES on each beta
update this summer for the latest breaking news on option
and env name changes.

• No Visual Studio property settings with initial beta products.
Manually add to VS “Command Line” “Additional Options”

95

Software & Services Group

Developer Products Division Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Running (linux)

• Simple hello world:
program hello_image

 write(*,*) "Hello from image ", this_image(), &

 "out of ", num_images()," total images“

end program hello_image

ifort –coarray –o hello_image hello_image.f90
./hello_image

 Hello from image 1 out of 4 total images

 Hello from image 4 out of 4 total images

 Hello from image 2 out of 4 total images

 Hello from image 3 out of 4 total images

96

Software & Services Group

Developer Products Division Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Controlling the Number of Images,
Command Line

• CAF is a SPMD model. “Images” similar to MPI
“Processes”

• Environment variable can set number of images

• Environment variable overrides
–coarray-num-procs compiler option

Linux host> export FOR_IMAGES_NUM=2

./hello_image

Window host> set FOR_IMAGES_NUM=2

hello_image.exe

 Hello from image 1 out of 2 total images

 Hello from image 2 out of 2 total images

97

Software & Services Group

Developer Products Division Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Further Reading

• Coarrays in the next Fortran Standard
– ftp://ftp.nag.co.uk/sc22wg5/N1801-N1850/N1824.pdf

• The New Features of Fortran 2008

– ftp://ftp.nag.co.uk/sc22wg5/N1801-N1850/N1828.pdf

• Fortran 2008 Standard (current draft)

– http://j3-fortran.org/doc/standing/links/007.pdf

98

ftp://ftp.nag.co.uk/sc22wg5/N1801-N1850/N1824.pdf
ftp://ftp.nag.co.uk/sc22wg5/N1801-N1850/N1824.pdf
ftp://ftp.nag.co.uk/sc22wg5/N1801-N1850/N1824.pdf
ftp://ftp.nag.co.uk/sc22wg5/N1801-N1850/N1828.pdf
ftp://ftp.nag.co.uk/sc22wg5/N1801-N1850/N1828.pdf
ftp://ftp.nag.co.uk/sc22wg5/N1801-N1850/N1828.pdf
http://j3-fortran.org/doc/standing/links/007.pdf
http://j3-fortran.org/doc/standing/links/007.pdf
http://j3-fortran.org/doc/standing/links/007.pdf

Software & Services Group

Developer Products Division Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Intel® Math Kernel Library
Flagship math processing library

• Multi-core ready with excellent

scaling

• Highly optimized, extensively

threaded math routines for science,

engineering and financial applications

for maximum performance

• Automatic runtime processor

detection ensures great performance

on whatever processor your

application is running on.

• Support for C and Fortran

• Optimizations for latest Intel

processors including 4th-gen Core

processors

99

Software & Services Group

Developer Products Division Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Application Areas which could use MKL

• Energy - Reservoir simulation, Seismic, Electromagnetics, etc.

• Finance - Options pricing, Mortgage pricing, financial portfolio management etc.

• Manufacturing - CAD, FEA etc.

• Applied mathematics

– Linear programming, Quadratic programming, Boundary value problems, Nonlinear
parameter estimation, Homotopy calculations, Curve and surface fitting, Numerical
integration, Fixed-point methods, Partial and ordinary differential equations,
Statistics, Optimal control and system theory

• Physics & Computer science

– Spectroscopy, Fluid dynamics, Optics, Geophysics, seismology, and hydrology,
Electromagnetism, Neural network training, Computer vision, Motion estimation and
robotics

• Chemistry

– Physical chemistry, Chemical engineering, Study of transition states, Chemical
kinetics, Molecular modeling, Crystallography, Mass transfer, Speciation

• Engineering

– Structural engineering, Transportation analysis, Energy distribution networks, Radar
applications, Modeling and mechanical design, Circuit design

• Biology and medicine

– Magnetic resonance applications, Rheology, Pharmacokinetics, Computer-aided
diagnostics, Optical tomography

• Economics and sociology

– Random utility models, Game theory and international negotiations, Financial
portfolio management

100

Software & Services Group

Developer Products Division Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Intel® MKL Contents

• BLAS

– Basic vector-vector/matrix-vector/matrix-matrix computation routines.

• Sparse BLAS

– BLAS for sparse vectors/matrices

• LAPACK (Linear algebra package)

– Solvers and eigensolvers. Many hundreds of routines total!

– C interface to LAPACK

• ScaLAPACK

– Computational, driver and auxiliary routines for distributed-memory
architectures

• DFTs (General FFTs)

– Mixed radix, multi-dimensional transforms

• Cluster DFT

– For Distributed Memory systems

• Sparse Solvers (PARDISO, DSS and ISS)

– Direct and Iterative sparse solvers for symmetric, structurally
symmetric or non-symmetric, positive definite, indefinite or Hermitian
sparse linear system of equations

– Out-Of-Core (OOC) version for huge problem sizes

101

Software & Services Group

Developer Products Division Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Intel® MKL Contents

• VML (Vector Math Library)

– Set of vectorized transcendental functions, most of libm functions, but
faster

• VSL (Vector Statistical Library)

– Set of vectorized random number generators

– SSL (Summary Statistical Library) : Computationally intensive
core/building blocks for statistical analysis

• PDEs (Partial Differential Equations)

– Trigonometric transform and Poisson solvers.

• Optimization Solvers

– Solvers for nonlinear least square problems with/without boundary
condition

• Support Functions

102

Software & Services Group

Developer Products Division Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

References

• Intel® MKL product Information

– http://software.intel.com/en-us/intel-mkl/

• User Discussion Forum

– http://software.intel.com/en-us/forums/intel-math-
kernel-library/

• What are the new software tools?

– http://whatif.intel.com

103

http://software.intel.com/en-us/intel-mkl/
http://software.intel.com/en-us/intel-mkl/
http://software.intel.com/en-us/intel-mkl/
http://software.intel.com/en-us/intel-mkl/
http://software.intel.com/en-us/intel-mkl/
http://software.intel.com/en-us/intel-mkl/
http://software.intel.com/en-us/forums/intel-math-kernel-library/
http://software.intel.com/en-us/forums/intel-math-kernel-library/
http://software.intel.com/en-us/forums/intel-math-kernel-library/
http://software.intel.com/en-us/forums/intel-math-kernel-library/
http://software.intel.com/en-us/forums/intel-math-kernel-library/
http://software.intel.com/en-us/forums/intel-math-kernel-library/
http://software.intel.com/en-us/forums/intel-math-kernel-library/
http://software.intel.com/en-us/forums/intel-math-kernel-library/
http://software.intel.com/en-us/forums/intel-math-kernel-library/
http://whatif.intel.com/

Software & Services Group

Developer Products Division Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Intel® Integrated Performance
Primitives (IPP)
Multicore Power for Multimedia and Data
Processing

• Features
– Rapid Application Development

– Cross-platform Compatibility &
Code Re-Use

– Highly optimized functions from
15 Domains
– Images and Video

– Communications and Signal
Processing

– Data Processing

– Performance optimizations for
latest 4th generation Intel Core
processors and Atom processors

104

Software & Services Group

Developer Products Division Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Intel® Integrated Performance Primitives

Applications
Digital Media | Web/Enterprise Data | Embedded Communications | Scientific/Technical

Intel® Integrated Performance Primitives 16 Function Domains

Optimized 32-bit and 64-bit Multicore Performance

Multimedia

• Image Processing
• Color Conversion
• JPEG/JPEG2000
• Video Coding
• Computer Vision
• Realistic Rendering

High level APIs and Codecs Interfaces and Code Samples

Cross-platform C/C++ API for Code Re-use

Signal Processing

• Signal Processing
• Audio Coding
• Speech Coding
• Speech Recognition
• Vector Operations

Data
Processing

• Data Compression
• Data Integrity
• Cryptography
• String Processing
• Matrix Operations

105

Software & Services Group

Developer Products Division Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

 Intel® Integrated Performance Primitives

Application Source Code

Intel IPP Usage Code Samples

Intel IPP Library C/C++ API

Intel IPP Processor-Optimized Binaries

• Intel® Core™ i7 Processors
• Intel® Atom™ Processors
• Intel® Core™ 2 Duo and Core™ Extreme Processors
• Intel® Core™ Duo and Core™ Solo Processors
• Intel® Pentium® D Dual-Core Processors
• Intel® Xeon® 64-bit Dual-Core Processors
• Intel® Xeon® DP and MP Processors

• Sample video/audio/speech codecs
• Image processing and JPEG
• Signal processing
• Data compression
• .NET and Java integration

API calls

Static/Dynamic Link

Rapid
Application

Development

Outstanding
Performance

Compatibility
and

Code Re-Use

• Data Compression
• Data Integrity
• Signal processing
• Matrix mathematics
• Vector mathematics
• String processing
• Speech coding
• Data Integrity

• Cryptography
• Image processing
• Image color conversion
• JPEG / JPEG2000
• Computer Vision
• Video coding
• Audio coding

Free Code
Samples

Processor-
Optimized

Implementation

Cross-platform
API

106

Software & Services Group

Developer Products Division Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners. 107

Functions and Samples

Domains Functions Samples

1. Image

Processing

* Geometry transformations, such as resize/rotate

* Linear and non-linear filtering operation on an image for edge detection, blurring, noise removal

and etc for filter effect.

* Linear transforms for 2D FFTs, DFTs, DCT.

* image statistics and analysis

* Tiled Image Processing / 2D Wavelet

Transform /C++ Image Processing

Classes/Image Processing functions

Demo

2. Computer

Vision

* Background differencing, Feature Detection (Corner Detection, Canny Edge detection), Distance

Transforms, Image Gradients, Flood fill, Motion analysis and Object Tracking, Pyramids, Pattern

recognition, Camera Calibration

* Face Detection

3. Color

conversion

* Converting image/video color space formats: RGB, HSV, YUV, YCbCr

* Up/Down sampling

* Brightness and contrast adjustments

4. JPEG Coding
* High-level JPEG and JPEG2000 compression and decompression functions

* JPEG/JPEG2000 support functions: DCT, Wavelet transforms, color conversion, downsampling

• UIC-Unified Image Codec/

Integration with the Independent JPEG

Group (IJG) library

5. Video Coding * VC-1, H.264, MPEG-2, MPEG-4, H.261, H.263 and DV codec support functions
* Simple Media Player/ Video Encoder /

h.264 decoding

6. Audio Coding * Echo cancellation and audio transcoding, BlockFiltering, Spectral Data prequantization. * Audio Codec Console application

7. Realistic

Rendering

* Acceleration Structures, Ray-Scene Intersection and Ray Tracing

* Surface properties, shader support, tone mapping
* Ray Tracing

 Intel® Integrated Performance Primitives

Software & Services Group

Developer Products Division Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners. 108

Domains Functions Samples

8. Speech Coding

* Adaptive/Fixed Codebook functions, Autocorrelation, Convolution, Levinson-Durbin

recursion, Linear Prediction Analysis &

Quantization, Echo Cancellation, Companding

* G.168, G.167, G.711, G.722, G.722.1,

G.722.2, AMRWB, Extended AMRWB

(AMRWB+), G.723.1, G.726, G.728,

G.729, RT-Audio, GSM AMR, GSM FR

9. Data Integrity
• Error-Correcting Codes

• Reed-Solomon

10. Data

Compression

* Entropy-coding compression: Huffman, VLC

* Dictionary-based compression: LZSS, LZ77

* Burrows-Wheeler Transform, MoveToFront, RLE, Generalized Interval Transformation

* Compatible feature support for zlib and bzip2

* zlib, bzip2, gzip-compatible /General data

compression examples

11. Cryptography
* Big-Number Arithmetic / Rijndael, DES, TDES, SHA1, MD5, RSA, DSA, Montgomery, prime

number generation and pseudo-random number generation (PRNG) functions
* Intel IPP crypto usage in Open SSL*

12. String

Processing
* Compare, Insert, change case, Trim, Find, Regexp, Hash * “ippgrep” – regular expression matching

Functions and Samples

 Intel® Integrated Performance Primitives

Software & Services Group

Developer Products Division Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners. 109

Domains Functions Samples

13. Signal

Processing

* Transforms: DCT, DFT, MDCT, Wavelet (both Haar and user-defined filter banks), Hilbert

* Convolution, Cross-Correlation, Auto-Correlation, Conjugate

* Filtering: IIR/FIR/Median filtering, Single/Multi-Rate FIR LMS filters

* Other: Windowing, Jaehne/Tone/Traingle signal generation, Thresholding

* Signal Processing Function Demo

14. Vector Math
* Logical, Shift, Conversion, Power, Root, Exponential, Logarithmic, Trigonometric, Hyperbolic,

Erf, Erfc

15. Matrix Math * Addition, Multiplication, Decomposition, Eigenvalues, Cross-product, transposition

Other Common

Functions
* CPUTypes, Thread Number Control, Memory Allocation * Linkages/Different language support

Intel IPP is suitable for a very wide range of applications

 Video broadcasting, Video/Voice Conferencing

 Consumer Multimedia

 Medical Imaging, Document Imaging

 Computer Vision /Object Tracking / Machine Learning

 Databases and Enterprise Data Management

 Information Security

 Embedded Applications

 Mathematical and Scientific

Functions and Samples

 Intel® Integrated Performance Primitives

Software & Services Group

Developer Products Division Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners. 110

Function naming convention and usage

Function names

 are easy to understand

 directly indicate the purpose of the

function via distinct elements

 each element has a fixed number

of pre-defined values

Name Elements Description Examples

Prefix

Indicates the functional

data type in 1D , 2D and

Matrix

ipps, ippi, ippm

Base Name
Abbreviation for the core

operation

Add, FFTFwd,

LuDecomp

Data Type
Describes bit depth and

sign

8u, 32f, 64f

Execution mode
Indicates data layout and

scaling

ISfs, C1R, P
ippiCopy_8u_C1MR

Prefix

Base Name Data
Type

Execution
Mode

Each function performs a particular operation on a known type of data in a specific mode

 Intel® Integrated Performance Primitives

Software & Services Group

Developer Products Division Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

References

• Intel® IPP product Information

– http://software.intel.com/en-us/intel-ipp/

• User Discussion Forum

– http://software.intel.com/en-us/forums/intel-
integrated-performance-primitives

• What are the new software tools?

– http://whatif.intel.com

111

http://software.intel.com/en-us/intel-ipp/
http://software.intel.com/en-us/intel-ipp/
http://software.intel.com/en-us/intel-ipp/
http://software.intel.com/en-us/intel-ipp/
http://software.intel.com/en-us/intel-ipp/
http://software.intel.com/en-us/intel-ipp/
http://software.intel.com/en-us/forums/intel-integrated-performance-primitives
http://software.intel.com/en-us/forums/intel-integrated-performance-primitives
http://software.intel.com/en-us/forums/intel-integrated-performance-primitives
http://software.intel.com/en-us/forums/intel-integrated-performance-primitives
http://software.intel.com/en-us/forums/intel-integrated-performance-primitives
http://software.intel.com/en-us/forums/intel-integrated-performance-primitives
http://software.intel.com/en-us/forums/intel-integrated-performance-primitives
http://software.intel.com/en-us/forums/intel-integrated-performance-primitives
http://software.intel.com/en-us/forums/intel-integrated-performance-primitives
http://software.intel.com/en-us/forums/intel-integrated-performance-primitives
http://whatif.intel.com/

Software & Services Group

Developer Products Division Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Intel® Composer XE 3
Debugging Tools Overview

112

• For Linux*/Mac OS*:
Intel® Debugger 13.0 (IDB)

– deprecated, but still required for full
Fortran debugging

 Enhanced GDB* Debugger

– GNU gdb 7.5 + branch trace and data
race detection

Software & Services Group

Developer Products Division Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Intel® Composer XE 2011
Debugging Tools Overview (cont’d)

113

Linux* Mac OS* Windows*

Intel® Debugger (IDB) Intel® Parallel Debugger
Extension

•Intel® Parallel Studio XE
•Intel® C++ Studio XE
•Intel® Composer XE
•Intel® C++ Composer XE
•Intel® Fortran Composer XE

•Intel® Cluster Toolkit
Compiler Edition

•Intel® Composer XE
•Intel® C++ Composer XE
•Intel® Fortran Composer XE

•Intel® Parallel Studio XE
•Intel® C++ Studio XE
•Intel® Composer XE
•Intel® C++ Composer XE
•Intel® Visual Fortran Composer XE

Software & Services Group

Developer Products Division Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Intel® Debugger (IDB)
Overview

114

Linux* Mac OS*

•GUI + Command Line •Command Line only

•Support for TBB, Cilk Plus, OpenMP & Native Threads
•GDB alike Command Line Syntax (also in GUI if available)
•Languages: C/C++ & FORTRAN
•Start GUI via idb, Command Line via idbc

Software & Services Group

Developer Products Division Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Intel® Debugger (IDB)
GUI

115

•Eclipse based GUI with similar Look&Feel
•No project/solution to set up – use debugger on-the-fly
•Remembers windows and positions across debugging sessions

 Intuitive and always-ready to debug

Software & Services Group

Developer Products Division Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Intel® Debugger (IDB)
Command Line

116

•GDB alike syntax with similar Look&Feel
•Useful for debugging where no GUI is available
•Allows execution of scripts (e.g. regression testing)
 Low system requirements & familiar syntax

Software & Services Group

Developer Products Division Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Intel® Debugger (IDB)
Information at a Glance

117

Current State

Sources

Assembly

Customizable
Views

Customizable
Toolbar

Customizable

Hotkeys

Software & Services Group

Developer Products Division Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Customize
Toolbars

Intel® Debugger (IDB)
Customize I

118

Customize GUI

Software & Services Group

Developer Products Division Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Intel® Debugger (IDB)
Customize II

119

Windows showing Tables can be customized:
•Hide or Show Column Entries
•Change Column Width
•Rearrange Entries

Software & Services Group

Developer Products Division Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Intel® Debugger (IDB)
Views

120

All Views

Direct Access to Views

•Console:
Like Command Line; GDB Syntax
•Threads:
List of all Threads
•Callstack:
Show Backtrace
•(Vector) Registers:
CPU Registers
•Memory:
Manually inspect Memory
•Assembler:
Instruction level debugging
•Breakpoints:
Events to Stop (Code, Data, Synchronization)
•Locals, (Vector) Evaluations:
Show Variables; automatic or selected
•Source Files:
List of all Sources with Debug Information

Software & Services Group

Developer Products Division Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Intel® Debugger (IDB)
Run Control

121

Important Run Control

Full Run Control

•Run or Continue:
Run or Continue Execution
•Suspend:
Pause Execution
•Kill:
Terminate Application
•Interrupt:
Abort Requests to IDB (e.g. complex evaluations)
•(Instruction) Step Into/Over:
Next Statement/Instruction following or not following calls/jumps
•Run Until (Caller):
Continue until Caller or until Location is reached
•Restart (with Arguments):
Terminate application & run again (providing different arguments)
•Current Thread Set (default: $lasteventingthread):
Set of Threads that are affected by Run Control

Software & Services Group

Developer Products Division Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Intel® Debugger (IDB)
Run Control Indicator

122

 Unloaded

 Loaded

 Stopped

 Running

•The Run Control Indicator shows the current Application State
•This Indicator is live Information from the Debugger
 In some cases (e.g. Inferior Calls) the Debugger might
 execute Code from the Application even if stopped!

Software & Services Group

Developer Products Division Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Intel® Debugger (IDB)
Start a Debugging Session Easily

123

Load or

Attach to

Process

Full Control about:

•Arguments

•Working Directory

•Environment &

•Source Search Paths

Software & Services Group

Developer Products Division Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Intel® Debugger (IDB)
Signals

124

•Flexible and Easy Control of System Signals

Software & Services Group

Developer Products Division Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Intel® Debugger (IDB)
Features: Vectors

125

•Vectors (SIMD) are composed from multiple elements of same Type
•IDB offers flexible Visualization and Access within
Vector Evaluations & Registers Views

Software & Services Group

Developer Products Division Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Intel® Debugger (IDB)
Features: Assembly View

126

•IDB supports Intel (default) and AT&T style Assembly
•Assembly is shown when no Source is known (can be customized)

Software & Services Group

Developer Products Division Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Intel® Debugger (IDB)
Features: Breakpoints I

127

•IDB supports different kinds of Breakpoints:
• Code Breakpoints
• Thread Synchronization Breakpoints
• Data Breakpoints

•Dynamic multiplicity*:
•1:1:
one address
•1:n (n > 1):
multiple addresses
•1:0:
 no address (yet)

*: Not for Data Breakpoints

Software & Services Group

Developer Products Division Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Intel® Debugger (IDB)
Features: Breakpoints II

128

•Create or Modify Breakpoints:

•Browse buttons aid in
selecting proper values:

•Symbol Selector
•Thread Set Selector

Change

Write

Any

1, 2, 4, 8
Byte

•Flexible Attributes:
•Condition
•Skip Count
•Action
•more later…

Code/Thread Synchronization Breakpoint

Data Breakpoint

Software & Services Group

Developer Products Division Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Intel® Debugger (IDB)
Features: C++ Template Support

129

•“Pretty print” C++ Templates in Locals, (Vector) Evaluations
Views and also edit most of them:

“Pretty Print” &

Edit

Software & Services Group

Developer Products Division Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Intel® Debugger (IDB)
Features: Multithreading Support I

130

•Stop event (e.g. Breakpoint) interrupts all threads, except for
Uninterrupted Threads
•Only Threads that are Thawed can continue execution
•Frozen Threads remain interrupted at all time

•Thread Types:
•Native (POSIX)
•OpenMP
•TBB
•Cilk

Software & Services Group

Developer Products Division Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Intel® Debugger (IDB)
Features: Multithreading Support II

131

•The Current Thread Set is the set of Threads affected by Run
Control
•Current Thread defines what Data Views show, if related to Thread
Context (e.g. Registers of a Current Thread)

Current Thread

Current

Thread Set

Software & Services Group

Developer Products Division Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Intel® Debugger (IDB)
Features: Multithreading Support III

132

•Breakpoints assist in Multithread Debugging:
•Thread Filter of Code & Data Breakpoints
•Thread Filter of Thread Synchronization Breakpoints create a
Barrier – specified Threads of Set stop at Barrier and only
continue if all Threads reached the Barrier
•Stopping Threads will stop the specified Threads

Thread

Filter

Stopping

Threads

Software & Services Group

Developer Products Division Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Intel® Debugger (IDB)
Features: Support for Parallel Programming I

133

Parallel Programming

Debug Controls

Full Parallel Programming

Debug Controls

Software & Services Group

Developer Products Division Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Intel® Debugger (IDB)
Features: Support for Parallel Programming I

134

•To use Parallel Programming Requirements enable Compiler
Option: -debug parallel

•For Thread Data Sharing Detection the Application Code will
be instrumented:

•Calls to library routines added for memory accesses.
•These library routines will determine if read/write accesses
to the same memory location are done by different threads
(without synchronizations) during execution. Such are Race
Conditions.
•Works for Native, TBB, Cilk Plus & OpenMP Threads

Software & Services Group

Developer Products Division Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Intel® Debugger (IDB)
Features: Support for Parallel Programming II

135

•Thread Data Sharing Events:
Enabled & Break

Detected

Races

Software & Services Group

Developer Products Division Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Intel® Debugger (IDB)
Features: Support for Parallel Programming III

136

•Thread Data Sharing Filters:

Ignore events
matching filters
or only show
events matching
filters (focus)

Filters for Data or Code

Ranges

Software & Services Group

Developer Products Division Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Intel® Debugger (IDB)
Features: Support for Parallel Programming IV

137

•Tasks, Task Spawn Tree & Teams Views:

Software & Services Group

Developer Products Division Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Intel® Debugger (IDB)
Features: Support for Parallel Programming V

138

•Barriers, Taskwaits & Locks Views:

OpenMP

Barriers

OpenMP

Locks

OpenMP

Waiting Tasks

Software & Services Group

Developer Products Division Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Intel® Debugger (IDB)
Features: Support for Parallel Programming VI

139

•Serialize Execution:
•Execute OpenMP & Cilk Plus Code in one Thread
•Distinguish Common Errors & Parallelization Errors (one click)

Serialize
Execution

Software & Services Group

Developer Products Division Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Intel® Debugger (IDB)
Features: Threading Building Blocks (TBB) Support

140

•TBB Containers can be “pretty printed” and even partly modified in
Locals, (Vector) Evaluations Views
•Step into does not follow TBB internal Code
(set $usessteppingrules=0 to turn off default)

“Pretty Print” &

Edit

Don’t step into

Software & Services Group

Developer Products Division Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Intel® Debugger (IDB)
Features: Record & Execute Command File

141

•Record a session – all I/O or just commands/actions during a session
•Replay via Execute Command File

Start/Stop
Recording

Replay
Recorded
Session

Software & Services Group

Developer Products Division Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Intel® Debugger (IDB)
IDB + Inspector XE (memory analysis)

142

•IDB can be used with Inspector XE as debugger during memory
analysis.
•For Inspector XE configure IDB as debugger via setting environment
variable $INSPXE_DEBUGGER (if not set GDB is the default)

Start debugger when first
error was found or with
every application start

IDB supports
all 3 types of

memory
analysis

Software & Services Group

Developer Products Division Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Intel GDB* Enhancements for Linux* and OS X*

• Intel® Debugger (Intel® IDB) is deprecated:

• No changes since Composer XE 2013 (13.0)

• May be removed in a future release

• New debugger solution is based on GNU Project Debugger
(GDB)* and includes additional improvements & features:

• Improved Fortran support

• GNU GDB 7.5 based

• Python* 2.6 or greater required

• Linux only:

• BTrace: Trace back branches taken before a crash

• PDBX: Parallel Debug Extensions for data race detection

• Pointer Checker: Assist in finding pointer issues

• Intel® Transactional Synchronization Extensions

143

Software & Services Group

Developer Products Division Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners. 144

Btrace – Based on Branch Trace Store

• Intel® Atom™ Processor and Intel® Core™ Family processors use Branch
Trace Store (BTS) to keep track of branch (“return”) targets for calls

• BTRACE uses this buffer to display stack trace “even in difficult cases” where
program execution stack is corrupted completely

Software & Services Group

Developer Products Division Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners. 145

Btrace: Example
Program crashed and back trace not available

(gdb) btrace enable auto

(gdb) run

Starting program: ../gdb/trace/examples/function_pointer/stack64

Program received signal SIGSEGV, Segmentation fault. 0x00000002a in ?? ()

(gdb) bt

#0 0x000000000000002a in ?? ()

#1 0x0000000000000017 in ?? ()

#2 0x000000000040050e in fun_B (arg=0x4005be) at src/stack.c:32

#3 0x0000000000000000 in ?? ()

Look at the branch trace.

List of blocks starts from the most recent block (ending at the current pc) and

continues towards older blocks such that control flows from block n+1 to block n.

(gdb) btrace list 1-7

1 in ?? ()

2 in fun_B () at src/stack.c:36-37

3 in fun_B () at src/stack.c:32-34

4 in main () at src/stack.c:57

5 in fun_A () at src/stack.c:22-25

6 in fun_A () at src/stack.c:18-20

7 in main () at src/stack.c:51-56

Software & Services Group

Developer Products Division Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners. 146

PDBX: Data Race Detection

• Sample: Assume two global variables
a=1
b=2

• And two threads T1, T2 executing
T1: x = a + b
T2: b = 42

• Value of x depends on execution order:
If T1 runs before T2  x = 3
If T2 runs before T1  x = 43

• Execution order is not guaranteed unless synchronization methods are
used.

(gdb) pdbx enable

(gdb) continue

 data race detected

 1: write answer, 4 bytes from foo.c:36

 3: read answer, 4 bytes from foo.c:40

Breakpoint -11, 0x401515 in foo () at foo.c:36

(gdb)

Software & Services Group

Developer Products Division Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners. 147

PDBX: Requirements /Notes

• Intel® Compiler 12.1 or later

• Compilation by -debug parallel option

• Core, Atom, or Xeon Phi processor

• Pthreads and /or OpenMP

– Works too for Intel® Cilk™ Plus and Intel® TBB tasking
but currently many false positives

• Python 2.6+ (host)

• Rather intrusive execution mode

– Both for time and memory consumption

– But mode can be enabled/disabled any time during debug
session

• Many filters available to fine tune PDBX debugging

Software & Services Group

Developer Products Division Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners. 148

Software & Services Group

Developer Products Division Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Backup

149

Software & Services Group

Developer Products Division Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Packages Overview

• The Intel® Composer XE is part of the respective
Intel® Parallel Studio XE series and being installed
within one unique setup

– Please refer to the Introduction Module for the Intel®
Parallel Studio XE setup

• The Intel® Composer XE is also available
separately and can be installed independtly from
Parallel Studio XE.

– for example when dedicated Composer updates are
available

150

Software & Services Group

Developer Products Division Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Intel® Composer XE Standalone Packages

• Installation Fileset Combinations

– Six filesets with C/C++ and Fortran for Windows and Linux

– C/C++ and Fortran packages sync‘d on same platform are
always in sync and have the same package versions and
features (except of language specific deviations)

– Optional IPP packages additionally to the compiler
packages due to licensing reasons

• Visual Studio* Shell and Libraries included in the
Intel® Visual Fortran Composer XE

– Packages with VS Shell included don‘t require any Visual
Studio installation on the system

– This is the default package available from Intel‘s
Registration Center product download.

151

Software & Services Group

Developer Products Division Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Composer XE Standalone Packages (2)

• Fileset Format

– [l|m|w]_[c|f]compxe_2013_sp1.<updatenr>.<buildnr>.[e
xe|tgz|dmg]

– w (Windows), l (Linux)

– c (C/C++ package), f (Fortran package)

– exe (Windows self-extracting executable), tgz (Linux tarball),
dmg (OS X package file)

• Examples:

– w_ccompxe_2013_sp1.0.103.exe

– Self-extracting Windows .exe file with C++ IA32 and Intel64
installers

– l_fcompxe_2013_sp1.0.103.tgz

– Linux archive with Fortran IA32 and Intel64 insntallers

152

Software & Services Group

Developer Products Division Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Composer XE Optional Standalone Packages

• Optional Packages

– Due to licensing or packaging reasons some packages may
be offered as additional standalone installations

– IPP Crypto and Fixed Size Funtion packages for C/C++
Compiler

– l|m|w_ccompxe_[gen|crypto]_ipp_7.x.x.xxx.exe|tgz|dmg

– Fortran packages without Visual Studio Shell and Libraries
(requires an existing Visual Studio installation on the
development machine)

– w_fcompxe_novsshell_2013_sp1.x.xxx.exe

153

Software & Services Group

Developer Products Division Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

License File

• A FLEXlm* license file is installed by the setup
program at
<common files>\intel\licenses (Windows)

</opt/intel/licenses> or <$HOME/intel/licenses> (Linux)

• Web users: a serial number is sent by email for
web users

• CD users: a serial number is provided on the CD
– Register to get one year free support and software updates

• Install-time license checking

154

Software & Services Group

Developer Products Division Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Product Activation

• 3 methods

– Using license file (.lic)

– Licese file is sent from Intel Registration Center upon serial
number registration

– Remote activation

– Requires Internet access

– Product S/N is registered at the Intel Registration Center and
license file is sent via email

– Evaluation installation

– Deos not require registration and license file

155

Software & Services Group

Developer Products Division Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

License Types

• Single user
– Product is licensed to be installed and used by a single user

• Concurrent users
– Product may be installed and used on as many systems as

desired, but no more than N users may compile concurrently
– See FLEXlm user guide for more details

• Special licenses
– Evaluation licenses: single-user license that expires (typically in

30 days)
– CD license: single-user license, support service available upon

registration
– Beta license: expires after a certain time period and is used by

beta compiler only

156

Software & Services Group

Developer Products Division Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Installation - Windows Setup

• GUI-driven and self-explaining installer

– Self-extracting .exe file automatically starts the installer

– Setup can be re-voked again to perform a
repair/modify/remove operation of the toolsuite via

– Windows Control Panel/Add or Remove Programs -> Intel
Composer XE 2013 SP1 for Windows*

– <installidr>\setup_x_xxx\Setup.exe, e.g. C:\Program Files
(x86)\Intel\Composer XE 2013 SP1\setup_1_139\Setup.exe

– C:\Program Files (x86)\Intel\Download\<package>\Setup.exe

157

Software & Services Group

Developer Products Division Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Installation - Linux Setup

• Command line-driven installer/uninstaller

– Extract file to temp dir and run installer, e.g.:
$ cd

$ tar -xzvf l_ccompxe_2013_sp1.1.106.tgz

$ cd l_ccompxe_2013_sp1.1.106

$./install //choose root , sudo root or user installation

.....

$ <installdir> bin/uninstall.sh //root or user uninstall, for example:

$ sudo /opt/intel/l_ccompxe_2013_sp1.1.106/bin/uninstall.sh

158

Software & Services Group

Developer Products Division Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Directory Structure - Windows

If not specified otherwise during the installation, the C/C++ Compiler and Fortran
Compiler are beiing installed under the same directory structure
• bin - start scripts, C/C++ and/or Fortran compiler executables and DLLs

(including source checker)
• compiler: Intel specific includes and libraries
• Documentation: Complete documentation of compiler, debugger and libraries
• help: Registration files for on-line help.
• ipp: IPP library files and demos
• mkl: MKL library files with examples, tests and benchmarks
• redist: Redistributable libraries, can be packed with application if required on

runtimes the update number Samples: Visual Studio projects with compiler
sample source code for C/C++ and/or Fortran and IPP

• setup_0: Uninstall, repair or modify can be started with Setup.exe from here
• tbb: TBB library files with examples
• VS Integration: Plug-in files for Compiler integration into Visual Studio

159

C:\Program Files\Intel\Composer XE 2013 SP1\ (on 32-bit system)
C:\Program Files (x86)\Intel\Composer XE 2013 SP1\ (on 64-bit system)

bin compiler mkl Samples ipp help Documentation VS Integration redist setup_x_xxx tbb

Software & Services Group

Developer Products Division Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Directory Structure – Linux/OS X

• Based on Linux standard guidelines
• bin contains compiler source scripts iccvars.(c)sh/ifortvars.(c)sh and symbolic links to

executables that can be invoked by user
• The lib, include, ipp, mkl, and tbb directories are symbolic links to directories with the

same name in composerxe and contain the performance library headers and libraries
• man contains man pages for executable commands. It will be a symbolic link to the man

structure under composerxe.
• licenses is the default licenses files (.lic) directory
• composerxe is a symbolic link pointing to the composer_xe_2013_sp1 directory.
• composer_xe_2013_sp1 is a physical directory containing links to header files and

libraries that are part of the latest Composer XE product configuration.
• composer_xe_2013_sp1.<n>.<bld>, for example composer_xe_2013_sp1.1.106 is the

directory containing the files from a Composer release. <n> is the update number (starting
at 0 for RTM) and <bld> is the build number.

• If /opt is a network drive, symbolic links are created if possible. They may or may not be
visible on systems on which the product was not installed.

160

/opt/intel
$HOME/intel

include bin lib man composer_xe_20
13_sp1

tbb mkl ipp composer_xe-

2013._sp1.<n>.<bld>
composerxe licenses

Software & Services Group

Developer Products Division Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Intel® C++ and Fortran Compiler XE 13.x
Standards Conformance

161

• C (icc):
• ISO/IEC 9899:1990 standard (-std=c89)

• C90 plus GNU extensions (-std=gnu89 [default])

• ISO/IEC9899:1999 standard (-std=c99 or –std=c9x)

• C99 plus GNU extensions (-std=gnu99)

● C++ (icpc):

• ISO/IEC 14882:1998 standard plus GNU* extensions
(-std=gnu++98 [default])

Note:
Almost same as 2003 standard (ISO/IEC 14882:2003)

• ISO/IEC 14882:2011 standard (-std=c++0x) or including GNU*
extensions (-std=gnu++0x)

• On Windows* (/Qstd=), you can only specify values c99 and
c++0x!

Software & Services Group

Developer Products Division Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Intel® C++ and Fortran Compiler XE
Standards Conformance – cont’d

162

• Fortran (ifort):

• Fortran 90, FORTRAN 77 and FORTRAN IV (FORTRAN 66)

• Fortran 95 (ISO/IEC 1539:1997) [baseline]

• Fortran 2003 (ISO/IEC 1539:2004)

• Fortran 2008 (ISO/IEC 1539:2010)

• More details here:
http://software.intel.com/en-us/articles/intel-fortran-compiler-
support-for-fortran-language-standards/

http://software.intel.com/en-us/articles/intel-fortran-compiler-support-for-fortran-language-standards/
http://software.intel.com/en-us/articles/intel-fortran-compiler-support-for-fortran-language-standards/
http://software.intel.com/en-us/articles/intel-fortran-compiler-support-for-fortran-language-standards/
http://software.intel.com/en-us/articles/intel-fortran-compiler-support-for-fortran-language-standards/
http://software.intel.com/en-us/articles/intel-fortran-compiler-support-for-fortran-language-standards/
http://software.intel.com/en-us/articles/intel-fortran-compiler-support-for-fortran-language-standards/
http://software.intel.com/en-us/articles/intel-fortran-compiler-support-for-fortran-language-standards/
http://software.intel.com/en-us/articles/intel-fortran-compiler-support-for-fortran-language-standards/
http://software.intel.com/en-us/articles/intel-fortran-compiler-support-for-fortran-language-standards/
http://software.intel.com/en-us/articles/intel-fortran-compiler-support-for-fortran-language-standards/
http://software.intel.com/en-us/articles/intel-fortran-compiler-support-for-fortran-language-standards/
http://software.intel.com/en-us/articles/intel-fortran-compiler-support-for-fortran-language-standards/
http://software.intel.com/en-us/articles/intel-fortran-compiler-support-for-fortran-language-standards/
http://software.intel.com/en-us/articles/intel-fortran-compiler-support-for-fortran-language-standards/
http://software.intel.com/en-us/articles/intel-fortran-compiler-support-for-fortran-language-standards/
http://software.intel.com/en-us/articles/intel-fortran-compiler-support-for-fortran-language-standards/
http://software.intel.com/en-us/articles/intel-fortran-compiler-support-for-fortran-language-standards/

Software & Services Group

Developer Products Division Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Intel® C++ and Fortran Compiler XE 13.x
Standards Conformance – C99

• Full support:

• Restricted pointers (restrict keyword).

• Variable-length Arrays

• Flexible array members

• Complex number support (_Complex keyword)

• Hexadecimal floating-point constants

• Compound literals

• Designated initializers

• Mixed declarations and code

• Macros with a variable number of arguments

• Inline functions (inline keyword)

• Boolean type (_Bool keyword)

• long double is 64 bit, not 128 bit (only Linux*)

• More here:

http://software.intel.com/en-us/articles/c99-support-in-intel-c-

compiler

163

http://software.intel.com/en-us/articles/c99-support-in-intel-c-compiler
http://software.intel.com/en-us/articles/c99-support-in-intel-c-compiler
http://software.intel.com/en-us/articles/c99-support-in-intel-c-compiler
http://software.intel.com/en-us/articles/c99-support-in-intel-c-compiler
http://software.intel.com/en-us/articles/c99-support-in-intel-c-compiler
http://software.intel.com/en-us/articles/c99-support-in-intel-c-compiler
http://software.intel.com/en-us/articles/c99-support-in-intel-c-compiler
http://software.intel.com/en-us/articles/c99-support-in-intel-c-compiler
http://software.intel.com/en-us/articles/c99-support-in-intel-c-compiler
http://software.intel.com/en-us/articles/c99-support-in-intel-c-compiler
http://software.intel.com/en-us/articles/c99-support-in-intel-c-compiler
http://software.intel.com/en-us/articles/c99-support-in-intel-c-compiler
http://software.intel.com/en-us/articles/c99-support-in-intel-c-compiler
http://software.intel.com/en-us/articles/c99-support-in-intel-c-compiler
http://software.intel.com/en-us/articles/c99-support-in-intel-c-compiler

Software & Services Group

Developer Products Division Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Intel® C++ and Fortran Compiler XE 13.x
Standards Conformance – C++0x

164

• Most important already in Intel® C++ Composer XE 2011!

• New in Intel® C++ Composer XE 2013:
• Additional type traits
• Uniform initialization
• Generalized constant expressions (partial support)
• noexcept

• Range based for loops
• Conversions of lambdas to function pointers
• Implicit move constructors and move assignment operators
• Support for C++11 features in gcc 4.6 and 4.7 headers

● See full list here:
http://software.intel.com/en-us/articles/c0x-features-supported-by-intel-c-
compiler/

Note:
Features marked as “partial” are not complete but at least implemented to the
extent of the typical default compiler (GNU GCC* or Microsoft Visual Studio*)!

http://software.intel.com/en-us/articles/c0x-features-supported-by-intel-c-compiler/
http://software.intel.com/en-us/articles/c0x-features-supported-by-intel-c-compiler/
http://software.intel.com/en-us/articles/c0x-features-supported-by-intel-c-compiler/
http://software.intel.com/en-us/articles/c0x-features-supported-by-intel-c-compiler/
http://software.intel.com/en-us/articles/c0x-features-supported-by-intel-c-compiler/
http://software.intel.com/en-us/articles/c0x-features-supported-by-intel-c-compiler/
http://software.intel.com/en-us/articles/c0x-features-supported-by-intel-c-compiler/
http://software.intel.com/en-us/articles/c0x-features-supported-by-intel-c-compiler/
http://software.intel.com/en-us/articles/c0x-features-supported-by-intel-c-compiler/
http://software.intel.com/en-us/articles/c0x-features-supported-by-intel-c-compiler/
http://software.intel.com/en-us/articles/c0x-features-supported-by-intel-c-compiler/
http://software.intel.com/en-us/articles/c0x-features-supported-by-intel-c-compiler/
http://software.intel.com/en-us/articles/c0x-features-supported-by-intel-c-compiler/
http://software.intel.com/en-us/articles/c0x-features-supported-by-intel-c-compiler/
http://software.intel.com/en-us/articles/c0x-features-supported-by-intel-c-compiler/
http://software.intel.com/en-us/articles/c0x-features-supported-by-intel-c-compiler/
http://software.intel.com/en-us/articles/c0x-features-supported-by-intel-c-compiler/

Software & Services Group

Developer Products Division Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Intel® C++ and Fortran Compiler XE 13.x
Standards Conformance – Fortran 2003

165

• Almost complete!

• New:
• Default initialization of polymorphic variables

• The keyword MODULE may be omitted from MODULE PROCEDURE in a

generic interface block when referring to an external procedure

• The following features will be added later:
• User defined derived type I/O

• Parameterized derived types

• Transformational intrinsics, such as MERGE and SPREAD, in initialization

expressions

Software & Services Group

Developer Products Division Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Intel® C++ and Fortran Compiler XE 13.x
Standards Conformance – Fortran 2008

166

• Most important features already there

• New:
• ATOMIC_DEFINE and ATOMIC_REF

Refer to the Release Notes for the full list!

And also here:
http://software.intel.com/en-us/articles/intel-fortran-compiler-support-for-
fortran-language-standards/

http://software.intel.com/en-us/articles/intel-fortran-compiler-support-for-fortran-language-standards/
http://software.intel.com/en-us/articles/intel-fortran-compiler-support-for-fortran-language-standards/
http://software.intel.com/en-us/articles/intel-fortran-compiler-support-for-fortran-language-standards/
http://software.intel.com/en-us/articles/intel-fortran-compiler-support-for-fortran-language-standards/
http://software.intel.com/en-us/articles/intel-fortran-compiler-support-for-fortran-language-standards/
http://software.intel.com/en-us/articles/intel-fortran-compiler-support-for-fortran-language-standards/
http://software.intel.com/en-us/articles/intel-fortran-compiler-support-for-fortran-language-standards/
http://software.intel.com/en-us/articles/intel-fortran-compiler-support-for-fortran-language-standards/
http://software.intel.com/en-us/articles/intel-fortran-compiler-support-for-fortran-language-standards/
http://software.intel.com/en-us/articles/intel-fortran-compiler-support-for-fortran-language-standards/
http://software.intel.com/en-us/articles/intel-fortran-compiler-support-for-fortran-language-standards/
http://software.intel.com/en-us/articles/intel-fortran-compiler-support-for-fortran-language-standards/
http://software.intel.com/en-us/articles/intel-fortran-compiler-support-for-fortran-language-standards/
http://software.intel.com/en-us/articles/intel-fortran-compiler-support-for-fortran-language-standards/
http://software.intel.com/en-us/articles/intel-fortran-compiler-support-for-fortran-language-standards/
http://software.intel.com/en-us/articles/intel-fortran-compiler-support-for-fortran-language-standards/
http://software.intel.com/en-us/articles/intel-fortran-compiler-support-for-fortran-language-standards/
http://software.intel.com/en-us/articles/intel-fortran-compiler-support-for-fortran-language-standards/

Software & Services Group

Developer Products Division Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

C++11 Support

New C++11 features

enabled by switch

 /Qstd=c++11 (Windows), -std=c++11 (Linux, OS X)
 (old std=c++0x switch still working)

• RVALUE references
• Variadic templates
• Extern templates
• Hexadecimal Floating Constants
• Atomic Types
• Right angle brackets
• Extended friend declarations
• Mixed string literal concatenations
• Support for long long
• Static assertions
• Universal character name literals
• Strongly-typed enums
• Lambda functions
• …

167

Software & Services Group

Developer Products Division Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Pointer Checker

• Finds buffer overflows and dangling pointers before
memory corruption occurs

• Powerful error reporting

• Integrates into standard debuggers (Microsoft, gdb,
Intel)

Buffer Overflow

{

 char *my_chp = "abc";

 char *an_chp = (char *) malloc (strlen((char *)my_chp));

 memset (an_chp, '@', sizeof(my_chp));

}

Dangling pointer

{

 char *p, *q;

 p = malloc(10);

 q = p;

 free(p);

 *q = 0;

 }

CHKP: Bounds check error

Traceback:

./a.out(main+0x1b2) [0x402d7a] in file mems.c at line 13

Pointer Checker Highlights Programming Errors For More Secure Applications

Compiler
s &
Libraries

Intel®
Parallel
Studio
XE

Intel®
Cluster
Studio
XE

Software & Services Group

Developer Products Division Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Intel® Math Kernel Library 11.1
New Features

• Conditional Numerical Reproducibility (CNR) for
unaligned memory

– Balances performance with reproducible results by allowing
greater flexibility in code branch choice and by ensuring
algorithms are deterministic. More information: training
site or the Intel® MKL User’s Guide).

– This release extends the feature to remove memory
alignment requirements

– Memory alignment is still recommended for best
performance

169

http://software.intel.com/en-us/articles/conditional-numerical-reproducibility-cnr-in-intel-mkl-110
http://software.intel.com/en-us/articles/conditional-numerical-reproducibility-cnr-in-intel-mkl-110

Software & Services Group

Developer Products Division Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Debugging on Linux* and OS X*

• Intel® Debugger (Intel® IDB) is deprecated:

• No changes since Composer XE 2013 (13.0)

• May be removed in a future release

• New debugger solution is based on GNU Project Debugger
(GDB)* and includes additional improvements & features:

• Improved Fortran support

• GNU GDB 7.5 based

• Python* 2.6 or greater required

• Linux only:

• BTrace: Trace back branches taken before a crash

• PDBX: Parallel Debug Extensions for data race detection

• Pointer Checker: Assist in finding pointer issues

• Intel® Transactional Synchronization Extensions

1
7
0

170

Software & Services Group

Developer Products Division Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Intel® MIC Architecture Debugging
(Linux*)

• Integration into Eclipse IDE*:

• Supports C/C++ & Fortran

• Support for offload extensions

• Multiple coprocessor cards

• Command line debugging of native coprocessor applications also
possible with GDB

1
7
1

171

Software & Services Group

Developer Products Division Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Intel® MIC Architecture Debugging
(Windows*)

• Integration into Microsoft Visual Studio* 2012:

• Supports C/C++ & Fortran

• Support for offload extensions

• Multiple coprocessor cards

• Debugging native coprocessor applications also possible with
remote attach

1
7
2

172

Software & Services Group

Developer Products Division Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Intel® Xeon Phi™
Coprocessors Offload
Extensions

173

Software & Services Group

Developer Products Division Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Language Extensions for Offload New
Features

• Three new clauses
• status - affects handling of offload failures

• mandatory - when coprocessor unavailable for offload and:

• No status → code aborts

• With status → user code directs
action

• optional - when coprocessor unavailable for offload and:

• No status → code runs on CPU

• With status → query value only –
no user directed action available

• User-specified offload clauses override -offload
compiler option settings

174

Software & Services Group

Developer Products Division Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Language Extensions for Offload New
Features

• New –offload (/Qoffload) option

w/keywords:
• none - Offload directives are ignored and cause warnings

at compile-time

• mandatory (default) - Offload directives processed When

coprocessor is unavailable for offload → code aborts

• optional - Any offload directives are processed When

coprocessor is unavailable → code runs on CPU

• These options are overridden by user-specified
offload clauses

175

Software & Services Group

Developer Products Division Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Language Extensions for Offload New
Features

• New environment variables

• OFFLOAD_DEVICES: Restrict process to using only the
coprocessors specified

• OFFLOAD_INIT: Hint to the offload RTL when to
initialize coprocessors

• OFFLOAD_REPORT: Enables different levels of tracing
and statistical information from offload.

• OFFLOAD_ACTIVE_WAIT: Controls keeping host CPU
busy during DMA transfers

176

Software & Services Group

Developer Products Division Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

OpenMP* 4.0 RC2

177

Software & Services Group

Developer Products Division Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

C++ Features
Intel® Composer XE 2013 SP1

• OpenMP* 4.0 SIMD Constructs
– #pragma omp simd [clause] // transform loops into SIMD loops

– {for-loops}

– clause is one of: safelen, linear, aligned, private, lastprivate, reduction,
collapse(n)

– #pragma omp for simd [clause] // transform loops into SIMD loops and
execute with a thread team

– {for-loops}

– clause is one of: safelen, linear, aligned, private, lastprivate, reduction,
collapse(n)

– #pragma omp declare simd [clause] // create a SIMD version of a
function

– {function declaration or definition}

– clause is one of: simdlen, linear, aligned, uniform, reduction, inbranch,
notinbranch

– Restriction: if the function is called in a SIMD loop, it cannot result in the
execution of an OpenMP construct (but the function itself can be called from an
OpenMP parallel region)

178

Software & Services Group

Developer Products Division Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

C++ Features
Intel® Composer XE 2013 SP1

• OpenMP* 4.0 TARGET Constructs
– #pragma omp target data [clause] // create a device data environment

for the extent of the target region

– {structured block}

– clause is one of: device(integer-expression), map(list), if(scalar-expression)

– #pragma omp target [clause] // create a device data environment and
execute the construct on the device

– {structured block}

– clause is one of: device(integer-expression), map(list), if(scalar-expression)

– #pragma omp declare target // map functions and variables to a device;
create device-specific versions of functions

– {variable and function declarations}

– #pragma omp target update motion-clause [clause] // update variables
between the device data environment and the host data environment

– motion-clause is one of: to(list), from(list)

– clause is one of: device(integer-expression), if(scalar-expression)

179

Software & Services Group

Developer Products Division Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Fortran Features
Intel® Composer XE 2013 SP1

• OpenMP* 4.0 SIMD Constructs
– !$omp simd [clause] ! transform loops into SIMD loops

– {do-loops}

– [!$omp end simd] ! Optional end directive

– clause is one of: safelen, linear, aligned, private, lastprivate, reduction,
collapse(n)

– !$omp do simd [clause] ! transform loops into SIMD loops and execute
with a thread team
– {do-loops}

– [!$omp end do simd] ! Optional end directive

– clause is one of: safelen, linear, aligned, private, lastprivate, reduction,
collapse(n)

– !$omp declare simd [clause] ! create a SIMD version of a procedure
– { function or subroutine definition }

– clause is one of: simdlen, linear, aligned, uniform, reduction, inbranch,
notinbranch

– Restriction: if the procedure is called in a SIMD loop, it cannot result in the
execution of an OpenMP construct (but the procedure itself can be called from
an OpenMP parallel region)

180

Software & Services Group

Developer Products Division Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Fortran Features
Intel® Composer XE 2013 SP1

• OpenMP* 4.0 TARGET Constructs
– !$omp target data [clause] ! create a device data environment for the

extent of the target region

– {structured block}

– clause is one of: device(integer-expression), map(list), if(scalar-expression)

– !$omp target [clause] ! create a device data environment and execute
the construct on the device

– {structured block}

– clause is one of: device(integer-expression), map(list), if(scalar-expression)

– !$omp declare target (list)// map functions and variables to a device;
create device-specific versions of functions

– list is a comma-separated list of variables, procedures, and named common
blocks

– !$omp target update motion-clause [clause] // update variables between
the device data environment and the host data environment

– motion-clause is one of: to(list), from(list)

– clause is one of: device(integer-expression), if(scalar-expression)

181

Software & Services Group

Developer Products Division Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Coarrays with Intel®
Xeon Phi™ Coprocessors

182

Software & Services Group

Developer Products Division Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Coarrays with Intel® Xeon Phi™
Coprocessors (cont.)

• Restrictions on coarray w/offload regions

• coindexing is *not* allowed
• All accesses to coarrays within an offload region must be

to the local copy of the coarray

• SYNC ALL, SYNC MEMORY, SYNC IMAGES, or
LOCK/UNLOCK use is*not* allowed in an
offload region

• Coarrays must *not* be allocated or
deallocated within an offload region

183

Software & Services Group

Developer Products Division Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Coarrays with Intel® Xeon Phi™
Coprocessors (cont.)

• Heterogeneous coarray application

• Some images run on the Intel® 64 host system and
some run on an Intel® Xeon Phi™ coprocessor

• Requirements Overview (heterogeneous)

• Refer to the RNs for specifics

• Compile with:

• –coarray=coprocessor

• –coarray-config-file=<file> to specify coarray (CAF)

configuration file

184

Software & Services Group

Developer Products Division Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Coarrays with Intel® Xeon Phi™
Coprocessors (cont.)

• Requirements Overview (heterogeneous) (cont.)

• Creates host & Intel® MIC architecture native
executable – must copy native exe to
coprocessor

• Coarray (CAF) configuration file - provides
critical MPI config information

• Path to native executable on the coprocessor

• Number of images to run on the host and
coprocessor

• Run with:

• Environment variable I_MPI_MIC set to ENABLE

185

Software & Services Group

Developer Products Division Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Coarrays with Intel® Xeon Phi™
Coprocessors (cont.)

• Native coarray application

• Runs exclusively on the coprocessor

• Compile with –coarray and -mmic

• Coarray (CAF) configuration file is not required

• Compilation creates single Intel® MIC architecture
native executable image

• Copy image along with referenced library shared objects
to the card - execute as normal native executable

186

Software & Services Group

Developer Products Division Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Fortran 2003 Support:
User Defined Derived
Type Input and Output

187

Software & Services Group

Developer Products Division Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

User Defined I/O
Intel® Composer XE 2013 SP1

–Fortran 2003 Standard feature

–Custom subroutines can be used to handle input
or output for objects of a derived type

–Motivation:

–Allows user control of the way input and output
is handled for derived type variables

– The default I/O handlers can not be used for
some derived types

– Component variables printed in order of declaration

– No pointers or allocatables

188

Software & Services Group

Developer Products Division Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

User Defined I/O
Intel® Composer XE 2013 SP1

– User defined I/O subroutines may be specified with an
explicit interface or as a type bound generic procedure.

– Supports Formatted, Unformatted, Namelist, and List
Directed I/O

– read(formatted), write(formatted)

– read(unformatted), write(unformatted)

– For Formatted I/O, format specified with dt edit descriptor

– write (6, fmt=‘(dt”my_type”(3,4))’) foo

– Formatted user defined I/O subroutines may only use
formatted I/O statements, and unformatted user defined
I/O subroutines may only use unformatted I/O statements

189

Software & Services Group

Developer Products Division Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

User Defined I/O
Intel® Composer XE 2013 SP1

–All User Defined I/O subroutines must handle :

– the derived type variable,

–Unit – the I/O unit number

–iostat

–iomsg

–Formatted I/O routines also handle

–Iotype - “Listdirected”, “Namelist”, or “DT”

– v_list – array containing values passed
through the DT edit descriptor, defaults to a
zero sized array

–If I/O procedure could be called recursively,
the routine must be labeled as recursive

190

Software & Services Group

Developer Products Division Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

User Defined I/O Example

module ball_mod

 type ball

 integer, pointer :: x, y

 double precision :: r

 integer :: id

 contains

 procedure :: write_ball

 generic :: write(formatted) => write_ball

 end type

 interface read(formatted)

 module procedure read_ball

 end interface=

Contains

 ...

 ! subroutines write_ball & read_ball

 ! are on the following slide

end module

Type can not be
output with
default I/O

191

Software & Services Group

Developer Products Division Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

User Defined I/O Example

 subroutine write_ball (this, unit, iotype, vlist,

iostat, iomsg)

 class(ball), intent(in) :: this

 integer, intent(in) :: unit

 character (len=*), intent(in) :: iotype

 integer, intent(in) :: vlist(:)

 integer, intent(out) :: iostat

 character (len=*), intent(inout) :: iomsg

 !Local

 character (len=18) :: pfmt

 write (pfmt, '(a,i2,a,i2,a)') &

 '(a,i', vlist(1), ',i', vlist(2), ',a,f8.3)'

 write (unit, fmt=pfmt, iostat=iostat,&

 iomsg=iomsg) "ball position = &

 ", this%x, this%y, " area =", &

 3.14 * this%r**2

 end subroutine

192

Software & Services Group

Developer Products Division Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

User Defined I/O Example

 subroutine read_ball (this, unit, iotype, vlist,

iostat, iomsg)

 class(ball), intent(inout) :: this

 integer, intent(in) :: unit

 character (len=*), intent(in) :: iotype

 integer, intent(in) :: vlist(:)

 integer, intent(out) :: iostat

 character (len=*), intent(inout) :: iomsg

 if (iotype == "DTradius") then

 read (unit, fmt="(f8.4)",iostat=iostat, &

 iomsg=iomsg) this%r

 else if (iotype == "DTid") then

 read (unit, fmt="(i6)",iostat=iostat, &

 iomsg=iomsg) this%id

 endif

 end subroutine

193

Software & Services Group

Developer Products Division Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

User Defined I/O Example

program main

 use ball_mod

 integer, target :: x = 4, y = 5

 type(ball) :: ball_foo

 ball_foo%x => x

 ball_foo%y => y

 write (*, '(a)') "ball radius="

 read (*, '(dt"radius")') ball_foo

 write (*, '(dt(2,2))') ball_foo

end program main

:~> ifort ball.f90

:~> ./a.out

ball radius=

2.d0

ball position = 4 5 area = 12.560

194

