
Joachim Protze (protze@rz.rwth-aachen.de)

Matthias Lieber (matthias.lieber@tu-dresden.de)

Tobias Hilbrich (tobias.hilbrich@tu-dresden.de)

Typical Bugs in parallel Programs

Parallel Programming Course, Dresden, 8.- 12. February 2016

Center for Information Services and High Performance Computing (ZIH)

2

Wrong memory access

Arithmetic errors

Memory leaks

Erroneous usage of library interfaces

Some Common Serial Bugs

Invalid access Undefined read

//Access to non-allocated memory
int *p;
p[100] = 123; //value of n undefined

int i,n;
for (i = 0; i < n; i++)

…

//32bit Integer overflow
int x, y=1000000;
x = y*y;

//Memory never freed

int do_work (int size)
{

int *x;
x = (int*) malloc (sizeof(int) * size);

}

//Invalid open mode
FILE *file;
file = fopen (“myfile.txt”, “rwa”);

3

Heisenbugs

A class of bugs that only manifests in certain runs of an application

In worst case it may never occur in the presence of a debugging tool

May result from:

– Usage of uninitialized memory

– Data races (a parallel problem, see later)

Example:

Very hard to track and identify as they are not easily reproducible

// a[i] might be > 1234 in
some application run

int a[100], i;
int *p;
for (i = 0; i < 100; i++)
{

if (a[i] > 1234)
p[i] = 5678;

}

4

Parallel Bugs

All serial bugs may also appear in a parallel application

Usage of threads/processes introduces new classes of errors

– Races

– Deadlocks

Communication with MPI introduces new classes of errors

– Overlapping buffers (potential races)

– Type mismatches (potential data trash)

– Leaks of MPI resources (potential MPI error)

– Various ways to produce deadlocks

5

Parallel Bugs – Race

Race: Program behavior dependent on execution order of threads/processes
due to unsynchronized write access to a shared state (e.g. variable)

Example:

Races are a frequent cause of heisenbugs, e.g.:

//write-write race (last writer wins)

int x,y;
#pragma omp parallel
{

x = omp_get_thread_num ();
#omp barrier
#omp master

printf (“Master is:%d” ,x);
}

int x,y;
#pragma omp parallel
{

#omp master
compute_something();

x = omp_get_thread_num ();
#omp barrier
#omp master

printf (“Master is:%d” ,x);
}

// due to the computation the
master almost always wins,
but it is not guaranteed

6

Parallel Bugs – Deadlock

Deadlock: A circular wait condition exists in the system that causes two
or more parallel units to wait indefinitely

In other words: “The application hangs …”

Example:
#pragma omp parallel sections
{

#omp section
{

omp_set_lock(&lock_a);
omp_set_lock(&lock_b);
omp_unset_lock (&lock_b);
omp_unset_lock (&lock_a);

}
#omp section
{

omp_set_lock(&lock_b);
omp_set_lock(&lock_a);
omp_unset_lock (&lock_a);
omp_unset_lock (&lock_b);

}
}

Deadlocking
Execution

Order

Deadlocking
Execution

Order

Thread1

Thread2
set(lock_a) set(lock_b)

set(lock_b) set(lock_a)

// Thread1 waits for lock_b
owned by Thread2, whereas
Thread2 waits for lock_a
owned by Thread1.
Thus, neither thread can free a
lock and both threads wait
indefinitely.

7

MPI standard: Memory regions passed to MPI must not overlap
(except send-send)

Complications

– Derived data types may span non-contiguous regions

– Collectives may both send and receive

Examples:

MPI_Isend (&(buf[0])/*buf*/, 5/*count*/, MPI_INT,...);
MPI_Irecv (&(buf[4])/*buf*/, 5/*count*/, MPI_INT,...);

MPI Usage Errors – Buffer Overlaps

Isend overlaps element buf[4] from the Irecv call!

MPI_Allreduce (&(buf[0])/*sendbuf*/,
&(buf[4])/*recvbuf*/, 5/*count*/, MPI_INT,...);

Recvbuf overlaps element buf[4] from the sendbuf!

8

Example 1:

– Consider type T1 = {MPI_INT, MPI_INT}

Example 2:

– T1 = {MPI_INT, MPI_FLOAT}

– T2 = {MPI_INT, MPI_INT}

MPI_Send (buf, 1, T1) MPI_Recv (buf, 2, MPI_INT)

MPI_Send (buf, 1, T1) MPI_Recv (buf, 1, T2)

MPI Usage Errors – Type Matching

Rank 0 Rank 1

No Error, types matchNo Error, types match

No Error, types matchMissmatch: MPI_FLOAT != MPI_INT

Rank 0 Rank 1

9

MPI uses opaque objects for communicators, requests, groups, data types,
windows, operations, …

Memory for these objects is allocated by the MPI library

Complications

– Amount of memory per object is not clear and depends on MPI
implementation

– Memory leaks

– MPI internal limits may lead to MPI error messages and abort

Example:

for(i=0; i<10000; ++i)
MPI_Isend (..., &request);

MPI_Finalize ();

MPI Usage Errors – Resource Usage

Applications should complete the outstanding
communication associated with request

10

Various ways to create deadlocks with MPI:

– Not all ranks call the same collective operation

– Complex completions, e.g. Wait{all, any, some}

– Non-determinism, e.g. MPI_ANY_SOURCE, MPI_ANY_TAG

– Choices of implementation in MPI standard (e.g. MPI_Send might be
blocking or non-blocking)

Example:

MPI_Send (to:1)
MPI_Recv (from:1)

MPI_Send (to:0)
MPI_Recv (from:0)

MPI Usage Errors – Deadlocks

No Error, types matchPotential deadlock: ranks wait for each other

Rank 0 Rank 1

11

Avoiding Bugs

Think and program, don’t hack !

Focus on writing code, not on deciphering it

– Write comments (short but helpful ones)

– Use descriptive names, stick to a coding style

– Use a helpful and consistent indentation

Use programming techniques, e.g.:

– Code reviewing

– Pair programming (one programmer codes, other comments & reviews)

– Check for pre/post conditions, e.g. assert(pointer != NULL)

Think about an verbose execution mode of your code

– The outputs give helpful hints on were an application is buggy

12

Find the Bug Early

Use compiler flags for compile-time and run-time checks (like –Wall)

– May detect syntax errors, portability errors, invalid reads

– Consult your compiler’s manual!

Check your code periodically with runtime tools, at least before production runs

Memory debugging tools detect memory leaks and invalid memory accesses

Valgrind (no MPI support, but free software): valgrind ./a.out

Allinea DDT (serial, OpenMP, MPI)

Check OpenMP parallelization for races and (potential) deadlocks

Intel Inspector XE

Detect MPI usage errors and (potential) deadlocks

MUST

13

Find the Bug Early: Call Stack Traceback

In case of a program crash, a simple call stack traceback sometimes is
sufficient to find the reason

Producing a traceback is system-dependent (compiler / MPI library)

For example, on Taurus with BullxMPI you might get:

[taurusi4002:22098:0] Caught signal 11 (Segmentation fault)
==== backtrace ====
2 0x00000000000548cc mxm_handle_error() debug.c:641
3 0x0000000000054a3c mxm_error_signal_handler() debug.c:616
4 0x0000003b332326a0 killpg() ??:0
5 0x0000000000401997 heatAllocate() heatC-MPI-01.c:39
6 0x0000000000402e4b main() heatC-MPI-01.c:432
7 0x0000003b3321ed5d __libc_start_main() ??:0
8 0x0000000000401769 _start() ??:0 Libc calls main()

Line 39 causes
the crash

Signal handler
in MPI library

Need to compile with –g to get source code location (if not, you get ??:0)

In case you only get an address (usually hex number like 0x00401997):

addr2line –e <executable> <address> tells you the location

14

Getting more Information from the Intel Compiler

Common flags:

– -g (produce debug information)

– -O0 (disable optimization)

Intel C Compiler compile-time information:

– -Wall (enable almost all warnings)

– -Wuninitialized (check for uninitialized variables – not reliable!)

– -std=c89 / -std=c99 / -std=c++11 (strictly conform to C/C++ standard)

Intel Fortran Compiler compile-time information:

– -warn all (enable all warnings)

– -std90 / -std95 / -std03 / -std08 (strictly conform to Fortran standard)

Intel Fortran Compiler run-time information:

– -traceback (call stack traceback when severe error occurs)

– -check (run-time checking, e.g. array bounds, uninitialized variables)

– -fpe0 (abort on floating point exceptions, e.g. division by zero, overflow)

