Intel® Inspector XE 2013

Memory Checker
Thread Checker
nalysis

un

utr f 1

-
‘ . I) :
238 AR PSR .-’ &
1111 i v s
L R it tal
e o Bl Mg “ Ty :
P— R e P A g cme——cos. 4 18 v _ - 1

Code the Future

Additional Material

Intel® Inspector XE — Memory and Thread Checker / Debugger

Intel Inspector XE:

* Product page - overview, features, FAQs...

« Training materials - movies, tech briefs, documentation...
« Evaluation guides - step by step walk through

« Case studies

e Support - forums, secure support...

« Set up static analysis: C, C++ and Fortran

More Analysis Tools:
e Intel® Advisor XE - threading prototyping tool for architects
e Intel® VTune™ Amplifier XE - performance profiler

Intel Software Development Products

http://software.intel.com/en-us/intel-inspector-xe
http://intel.ly/inspector-xe-learn
http://software.intel.com/en-us/evaluation-guides/
http://software.intel.com/en-us/articles/sdp-case-studies
http://intel.ly/vtune-amplifier-xe-support
http://software.intel.com/security-analysis-with-c-eval-guide
http://software.intel.com/security-analysis-with-fortran-eval-guide
http://software.intel.com/en-us/intel-advisor-xe
http://software.intel.com/en-us/intel-advisor-xe
http://software.intel.com/en-us/intel-advisor-xe
http://software.intel.com/en-us/intel-advisor-xe
http://software.intel.com/en-us/intel-vtune-amplifier-xe
http://software.intel.com/en-us/intel-vtune-amplifier-xe
http://software.intel.com/en-us/intel-vtune-amplifier-xe
http://software.intel.com/en-us/intel-vtune-amplifier-xe
http://software.intel.com/en-us/intel-sdp-home/

Correctness tools increase ROI by 12%-21%

Cost Factors - Square Project Analysis

CERT: U.S. Computer Emergency Readiness Team, and Carnegie Mellon CylLab
NIST: National Institute of Standards & Techno/ogy : Square Project Results

Correctness tools find
defects during
development prior to
shipment

Size and complexity of
applications is growing

Reworking defects is | :
40%-50% of total ‘ , Reduce time, effort,

project effort and cost to repair

Deliver More Reliable Applications

Intel® Inspector XE and Intel® Parallel Studio XE family of suites

Dynamic Analysis
Memory Errors

Problems
IDa %

F1 Mismatched allocation... fin

Frohlem 5o

P2 @ Invalid memory access fin
Pz @ Mernory leak fin
=

Threading Errors

Timeline

*main 09407 (109407
thread*video (4492) (4492)

Write: winvideo.h:270

Intel Inspector XE dynamically instruments & runs the application and
watches for errors. Use any build, any compiler (debug build is best).

Static Analysis
Code & Security Errors

Code Locations: Divide by zero (possible)

Description Source Function

Divide by zero cylinder.cppdl31l void cylinder_

129 VCross(src, &cyl-»axis, |
130 VDOT (t, O, n);
131 t=-t/ In;

Intel compiler inspects source.
Use any compiler for production.

Static Analysis & Pointer Checker are only available in the Parallel Studio XE family of suites. Not sold separately.

Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Intel®
Inspector XE
alone

Added bonus
features in

Intel®

Parallel Studio XE
suites

Deliver More Reliable Applications

Intel® Inspector XE and Intel® Parallel Studio XE family of suites

Dynamic Analysis
Memory Errors

Problems

an, Prablem So

Mismatched allocation... fin

Invalid memory access fin
P2 @ Mermory leak fin
Sd i PR :

» Invalid Accesses
« Memory Leaks
* Uninit. Memory Accesses

Static Analysis
Code & Security Errors

Code Locations: Divide by zero (possible)

Description Source Function

Divide by zero cylinder.cppl3l void cylinder_

129 VCross({src, scyl-»axis,
130 vDOT (c, O, n):
131 t=-t/ 1In;

« Buffer over/under flows
» Incorrect pointer usage
» Over 250 error types...

Static Analysis & Pointer Checker are only available in the Parallel Studio XE family of suites. Not sold separately.

Threading Errors

L ETE

¥ main 09407 (109407
thread®video (4492) [4492)

Write: winvideo.h:270

* Races
» Deadlocks
» Cross Stack References

Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

« Multiple tools

« One common user
interface

« Easy workflow for
developers

« Windows & Linux

Find errors earlier

with less effort

Dynamic Analysis Finds Memory & Threading Errors

Intel® Inspector XE 2013

Find and eliminate errors

« Memory leaks, invalid access...

« Races & deadlocks

« C, C++, C#, F# and Fortran
(or any mix)

Simple, Reliable, Accurate

« No special recompiles
Use any build, any compiler

« Analyzes dynamically generated

or linked code

« Inspects third party libraries
where source is unavailable

 Productive user interface

« Command line for automated

regression analysis

rﬁ

Detect Memory Problems
& Target Analysis Type || B Collection Log
Problems
Problem Sources
Mismatched allocat... deleted.cpp: new.c...

Mismatched allocat... find_and_fi_mem ...

Kernel resource leak asctime.c

=1
1of2 b [al]

Intel Inspector XE 2013

Modules
thb_debug.dll
find_and_fix_me ...
MSVCR100D.dll

Description Source Function Module Obje... Off..

Mismatched deallocation site find_and_fix_.. operator() find_and_fix...

1

//delete drawing;
1

drawing->put_pixl |find and fix memory errors.

free(drawing); //Mel|[tbb debug.dll!local wait_ fo

find and fix memory errors.

tkk debug.dll!local_ spawn r
tbk debug.dll!spawn_root_an

find_and_fix_... operator find_and_fix...

{

for (int y = r.begin(): v 'S

drawing_area * drawi| |tbb_debug.dll!local wait_fo
for (int x = startx | |tbb debug.dll!local spawn_r
color_t ¢ = rend |thb _debug.dll!spawn_root_an

find and fix memory errors.
find and fix memory errors.

Clicking an error instantly displays

source code snippets a

’ Easy to fit into your existing process

nd the call stack

Copyright© 2013, Intel Corporation. All righ
*Other brands and names are the property of their

New for 2013! @&

Intel® Inspector XE 2013 Dynamic Memory & Thread Analysis

Heap Growth Analysis

Diagnose Heap Growth

of* Show Leaks/Growth Now

Diagnose heap growth. Get a list of
memory allocations not freed in an
interval set with the GUI or an APL.

Improved Error Suppression

Precise Suppressions Remove False Errors Safely

Suppression = {
Name = "Example";
Type = { uninitiazlized memory_access }

Stacks = {
{
mod=za.out, func=update x;
func=main;

More precise, easy to edit, team shareable.
Choose which stack frame to suppress.
Eliminate the false, not the real errors.

Debugger Breakpoints

Problems
Da & Prablem Sources
HPL @ Mismatched allocation, View Source
® Invalid rmemory access Edif Soilice
®P3 Memory leak 53 Copyto Clipboard
wHp @ Memory leak Explain Problem
EP5 @ Memory leak Create Problemn Report...
6 & Memary growth Debug This Problermn

Diagnose the problem. Break into the
debugger just before the error occurs.
Examine the variables and threads.

Pause/Resume Collection

__itt suppress push(itt suppress threading errors);
/* Any threading errors here are ignored */
__itt suppress pop();
/* Any threading errors here are seen */

Speed-up analysis by limiting its scope.
Turn on analysis only during the
execution of the suspected problem.

Find and diagnose errors with less effort. ‘

Copyright© 2013, Intel Corporation. All rights reserved.

(intel,

*Other brands and names are the property of their respective owners.

Analysis - Intel® Inspector XE
What's New in SP1?

Easier Migration From Other Tools
« Import suppression lists from Purify* and Valgrind* on Linux*

Fewer False Errors and Easier Suppression Management
* Precise suBFressions specify single or multiple stack locations
« User editable suppression files (or use the GUI)

« Fortran - reduced false positives due to allocation

Leak Reports No Waiting!

« Set a baseline for incremental analysis with GUI or API

« Report incremental leaks and heap growth since the baseline
« No waiting until the end of the analysis run

New OS, Threading Model & Processor Support
OpenMP 4.0

Haswell — Windows* & Linux*

Windows* 8 desktop

Visual Studio* 2012

Latest Linux* distributions

New since the first 2013 release. Some features released in earlier updates.

Pointer Checker and Memory Checker

Intel Parallel Studio XE family of suites

Pointer Checker *Ei Memory Checker

Recompile with Intel® Compiler Use any build, any compiler

Lower overhead Higher overhead

Only finds pointer errors Finds multiple error types

One error at a time GUI sorts multiple errors
Traceback: Source file + Line # Traceback: Shows source code
Triggers debugger breakpoint Triggers debugger breakpoint

; - - b i av P
Microsoft Visual Studio .g x_ S B () Detect Memory Problems Intel Inspector XE 2013

& Target Analysis Type || B¢ Collection Log

-f\! dpicexe has triggered a breakpoint

Problems

Mismatched allecat... delete2.cpp; new.c... thb_debug.dll
Mismatched allocat... find_and_fo mem... find_and_focme...
HP3 @ Kernel resource leak asctime.c MSYCRL00D.dll Deferred -

I Break Continue J lgnore

Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their ective owners.

Static Analysis Finds Coding and Security Errors
Intel® Parallel Studio XE 2013 Family of Suites

Find over 250 error types B il T
« Incorrect directives, memory leaks,
pointer and array errors, buffer
overflows, uninitialized variables...

Intel Inspector XE 2013

Easier to use ‘-‘2‘3':{2‘; P2 @ Divide by zero (possible) cylinder.cpp P Confirm... 75 Other

jcylinder.cpp(lﬂ]: error #12062: possible divide by zero

. . .
[] C h O O Se yo u r p rl O rl ty L] 7T @ Unsafe format specifier parse.cpp v Fixed 0 Format
parse.cpp(187): error #12329: specify field width in format specifier to avoid buffer

- Minimize false errors Wo\rerﬂowonargumentBincaIIto"fscanf"
- Maximize error detection

« Hierarchical navigation of results Setucsionse i s o memyaror.. vl o opetole J

° Sha re Com ments With the tea m drawing->put_pi||woid draw_task::operator()

}
free (drawing): //u
f//delete drawing:

]

I n C rea Sed Acc u ra Cy & S peed :'.ﬁa‘.:{?} Allocation site _find_and_fix_memory_errors. ... void draw_task:operator()(cl ...

168 for (int ¥ = r.begin(); v !||void draw_task::operator()

 Detect errors without all source files (

170 drawing area * draw

- Better scaling with large code bases = L |

: : ENEW Clicking an error instantly displays
COde Compl_eX|ty Metrics 23“”'; source code snippets and traceback.
 Find code likely to be less reliable Available for C, C++ and Fortran.

’ Find Errors and Harden your Security ‘

Static Analysis is only available in the Parallel Studio XE family of suites. It is not sold separately.

Optimization i ntel‘
Copyright© 2013, Intel Corporation. All rights r . 1

*Other brands and names are the property of their re ctive owners.

Dynamic Analysis Complements Static Analysis
In Intel® Parallel Studio XE family suites

Dynamic Analysis Static Analysis

Use any build, any compiler Rebuild with Intel® Compiler
! (Keep your existing compiler for code generation.)

Fewer false errors. Only active Comprehensive, but more false
code paths are analyzed. errors. Not limited by test cases.

Analyze 3 party code n/a — Source required

Can trigger debugger breakpoint n/a — No diagnostic capability
Slow (1x — 20x - 100x workload) Fast (no workload, “slow” build)
Memory & Threading Errors Memory, Code & Security Errors

(i) Intel Inspector XE 2013

() static Analysis Result Intel Inspector XE 2013

Detect Memory Problems

@ Target Analysis Type || B¢ Collection Log

Problems Problems

Ja @& Problem
Mismatched allocat... delete2.cpp; new.c... tbb_debug.dll

Divide by zerc (possible) cylinder.cpp

cylinder.cpp(131): error #12062: possible divide by zero

Mismatched allocat... find_and_fomem ... find_and_fo,me...

=y - P @ Unsafe format specifier parse.cpp Fr Confirmed 70 Format
P3 Kernel resource leak _asctime.c MSVCRL00D.dll Deferred i parse.cpp(187): error #12329: specify field width in format specifier to avoid buffer overflow on
argument 3 in call to "fscanf" -

Optimization i ntel‘
Copyright© 2013, Intel Corporation. All rights r . 1

*Other brands and names are the property of their re ctive owners.

Productive User Interface

Intel® Inspector XE

'ﬁ Locate Memory Problems

Analysis Type || B Collection Log

Object Size

& Target
Select a
problem set

Problems
U @
BHpl ®
HP? @
HP3 Ay

Problem Sources State

* Confirmed
Fr Mot fixed
F Confirmed

Mismatched allocat... find_and_fo memery_ermro ...

Invalid memory acc.. find_and_fix_memory_erro ...
Memory not deallo... api.cpp; util.cpp; video.cpp

FHP4 @ Memary leak find_and_fix_rmemory_erro... 1344
FHPS @ Memory leak find_and_fe_memory_erro ... 784 v Fined
FPG G Memory leak find_and_fix_memory_erro ... 672 Be Mew
FHP7 @ Memory leak find_and_fix_memory_erro ... 1120 B Mew
—
d 4110 1of2 b [Al] 2
Co e Description Source Funct... Module “

snippets

Mismatched deal... find_and_fox memo... opera.. find_and_fix_memg

d isplayed for 173 drawing->put p||find and fjl memory errors

174 } find and jfk memory errors||E
SeleCted ¢ 3 free(drawing); //||tbk debugiill!lccal wait_ f]
prOblem 176 //delete drawing; ||tbb_debu

177]

location site find_and_fix_memo... opera.. find_and_fix_m/

lag for (int v = r.begin{); ¥ find a
189 { find a
170 drawing area * dra
171 for (int x = start
172 colar €L © = PE

fix memory errors
P fix memory errors

ig.dll!process — ar
jug.dll!process - ma

Problem States:
New, Not Fixed, Fixed, Confirmed,
Not a problem, Regression

Copyright© 2013, Intel Corporation. All rights reserved.

f
f
f
Fr Deferred f
f
f
f

Intel Inspector XE 2013

Source

api.cpp 1 itemn(s)
find_and_fix_memory_errors.cpp 6 itemn(s)
util.cpp 1itemis) [—
video.cpp 1 itern(s)

m

State
Confirmed
Deferred
Fixed
Mew

2 item(s)
1 itemni(s)
1 itemni(s)
2 itermn(s)

hreadstartex (9340) (934l

y

Timeline
shows when
error occurred

Filters let you focus
on a module, or error
type, or..

*Other brands and names are the property of their respective owners.

Double Click for Source & Call Stack

Intel® Inspector XE
| Call Stack

v
""F, Mismatched allocation/deallocation Intel Inspector XE 2013
& Target Analysis Type || B Collection Log “ Summary m

find_and_fix_memory_errors.cpp

drawing area * drawing = new drawing area(startx, t find_and_fix_memory_errors.exeloperator| =

for (int x = Startx ; X < Stopx; X++) | find_and_fix_memory_errors.exelexecute -

color_t ¢ = render one pixel (x, ¥, local mbox, \§ tbb_debug.dl!local_wait_for_all - custom_

SO u rce COd e drawing->put_pixelic); tbb_debug.dll!process - arena.cpp:136
|Ocat|OnS } ‘ thb_debug.dillprocess - market.cppil81

displayed for 7 fj::li:-::";:g:iing{; =y Error: use delete instead of thb_debug.dilirun - private_server.cpp:23€

Selected | | thb_debug.dlithread_routine - private_ser

bl Frivid : Nl tbb_debug.dillcallthreadstartex - threadex| |
m ' ->NEext, turn;
pro e 1f{tvideo—>next_frame()) return thb_debug.dilthreadstartex - threadex.c:2!

1 | gernel32.dllBaseThreadInitThunk

ix_memory_errors.cpp:170)

find_and_fix_memory_errors.exeloperator =

for (int ¥ = r.begin(}; ¥ != r.end{); ++y) | find_and_fix_memory_errors.exelexecute -

{ thb_debug.diilocal_wait_for_all - custormn_
drawing area * drawing = new drawing area(startx, total thb_debug.dlllprocess - arena.cpp:136

for (int ®x = startx ; X < StopxX; N++) {

thb_debug.dillprocess - market.cpp:181

color t © = render one_pixel (x, ¥, local _mbox, ser tbb_debug.dillrun - private_server.cpp:23€

drawing->put_pixel(c): |:| thb_debug.dllthread_routine - private_ser
}

- 3) e : 4ol) 4 of 1 tbb_debug.dil!callthreadstartex - threadex| |
H H t t
ree (drawing) MOTY RITOLL USS deiStE instead o - [thb_debug.dillthreadstartex - threadex.c:2!

b kernel32.dll!BaseThreadInitThunk

f/delete drawing;

Copyright© 2013, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners.

Problem State Lifecycle

Makes problems easier to manage

F Locate Memory Problems Intel Inspector XE 2013 View Source
Edit Source
@ Target Analysis Type || B Collection Log 3 Copy to Clipboard
Problems ? Explain Problem
L) Problem Object Size State Sources Modules = = Prc!-blem SER
Mismatched allocatyg .. + find_and_fic memo ... Debug This Problem Mot fied
Invalid memory ar A Fr Mot fixed find_and_fix_memo ... Confirmed
/ Fr Confirmed api.cpp; util.cpp; vi... Merge States... Fixed m

Fr Deferred find_and_fix_memo ...
v Fived find_and_fo_memo...

Mot a problerr
Deferred

B Mew find_and_fix_memo ...

New Detected by this run
Not Fixed Previously seen error detected by this run

Not a Problem Set by user (tool will not change)
Confirmed Set by user (tool will not change)
Fixed Set by user (tool will change)
Regression Error detected with previous state of “Fixed”

Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Filtering - Focus on what's important

Example: See only the errors in one source file

Before - All Errors After - Only errors from one source file

ﬁ Static Analysis Result Intel Inspector X€ 2013 ﬁ Static Analysis Result Intel Inspector XE 2013

Problems B il Problems
i @ Problem Sources State Weight

Severity
Error

i @ Problem Sources State Weight =
P1 @ Badfree find_and ... Fe Mew 80 4

find_and_fix_memory_errors.cpp(175): error #12375: referenced
memeory allocated at (filerfind_and_fix_memory_errors.cpp
line170) through "operator new” is illegally deallocated through
"free"

m | »

P31 * Null pointer derefer... apigeom.. ' Mew 60

(2) Error count drops

Problem
Bad free
Bounds viclation on string

Mull pointer dere ce(po.. 3
Unvalidated external data us... 1
Urvalidated external data us... 1

P32 @ Null pointer derefer... apigeom ... Pk New 60

apigeom.cpp(164): error #12172: dereference of pointer

" Is" which i iblv set £ Il 2t (fil L ’ Source ul
normals” which is possibly set to null at (file:apigeom.c . .
line142) P v P pp\ apigeom. cpp 5 item(s)

vector.cpp(77): error #12172: dereference of pointer "= __.diu‘ State

New

Suppressed

Divide by zero (possible)

Divide by zero (poss... cylinder. ... * New Double free (possible)

File handle leak

Format to arg count mis...

cylinder.cpp(131): error #12062: possible divide by zero
@

=]

Unsafe format speci..

S T SR S S

. parse.cpp P Confirmed 70
=]

L - P P

Description Source Function (1) FI Ite r - S h OW on |y Description Source Fr Variable " ; s
Divide by zero cylinder.cppil31l void cylinder_inte f' I Memory write apigeom.cr void rt_sheightfield ... ot suppresse
129 WCross (erc, &cyl-»axi||woid c:i One Source I e 139 int x, e EOdr; void rt_sheightfie Investigated
130 VDOT (t, @, n); o 140 - Not investigated
131 t=-t/1ln; Source 141 ices = (vector *)
132 VCrosa(en, scyl-»axia “PF # normals = {vector *)
133 VNI &0); apigecm.cpp 5 s 13
VNorm {s0) { o b ol . s

Tip: Set the “Investigated” filter to “"Not investigated” while investigating problems. This
removes from view the problems you are done with, leaving only the ones left to investigate.

Static Analysis shown, but filters work the same way for dynamic memory & threading analysis.

Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Heap Growth Analysis &

Does your memory usage grow mysteriously?

- Set an analysis interval with [ERNaCE R0
start and analysis end

points
- Click a button -or-

- Use an API -

*| Detect Memory Problems

. See 3 ||St Of memory Pm:sle::rget Analysis Type || B: Collection Log| [Naay]

Modules State

Intel Inspector XE 2013

1 Problem Sources
a I I Oca tl O n S th at a re n Ot Memory growth gdivideo.cpp:112 find_and_fix_memory_errors.exe R New

Memery growth video.cppiB2 find_and_fix_memory_errors.exe ' New

freed i n th e i n te rva | Memery growth util.cpp:163 find_and_fix_memory_errors.exe Bk New

Mermory growth util.cpp:l@3 find_and_fix_memory_errors.exe B New

* Quickly zero in on ors b

Description Source Function Medule

S u S p i C i O u S a Ct i V i ty t h a t Allocation site video.cpp:82 window_title_string find_and_fix_memory_errors.exe

80 char *name: find and fix memory errors

contributes to heap growth name = (e 41 madles (8152)7 || Somiend P orms

83 find and fix memory errors

Speed diagnosis of difficult to find heap errors

Optimization
Copyright© 2013, Intel Corporation. All rights reserved. \ L1)

*Other brands and names are the property of their respective owners.

i

Command Line Interface

Automate analysis

inspxe-cl is the command line:

— Windows:

\bin[32|64]\inspxe-cl.exe
— Linux: /opt/intel/inspector xe/bin[32]64]/inspxe-cl

Help:
inspxe-cl —-help

Set up command line with GUI

Command examples:

1. 1nspxe-cl -collect-list

&

’Memory Error Analysis v]

)
Ire Configure Analysis Type

C:\Program Files\Intel\Inspector XE

Intel Inspector XE 2013

| Detect Leaks
By

O
[SEsDctect Memory Problems
@
Locate Memory Problems
Analysis Time Overhead]
et Memory rems [o

Medium scope memary error analysis
type. Increases the load on the system and
the time and rescurces required to
perform analysis. Press FL Tur more details.

Project Properties..,
:

Detect resource leaks

2. 1nspxe-cl —-collect tiZ2 -- MyApp.exe
3. 1lnspxe-cl -report problems

Great for regression analysis — send results file to developer
Command line results can also be opened in the GUI

Copyright© 2013, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners.

i

Productive User Interface

Intel® Inspector XE

Dy st

View Context of Problem
Stack
Multiple Contributing Source Locations

Collapse multiple “sightings” to one error
(e.g., memory allocated in a loop, then leaked is 1 error)

Suppression, Filtering, and Workflow Management
Visual Studio* Integration (Windows*)
Command line for automated tests

M B N\ B

Time Line visualization
Memory Growth during a transaction

SEBY SBY \BE N\ Bl

Trigger Debugger Breakpoint

One productive interface for both static and dynamic analysis. ‘

Static Analysis is included in Parallel Studio XE studio bundles. It is not sold separately.

Optimization i ntel‘
Copyright© 2013, Intel Corporation. All rights reserved. L J L_’
na

*Other brands and names are the property of their respective owners.

Intel® Parallel Studio XE Suites

Leading development suite for application performance

Intel® Intel®
Cluster Parallel
Studio XE Studio XE
° L Intel® VTune™ Amplifier XE - Performance Profiler
% ® ® Intel® Inspector XE - Memory & Thread Analyzer
% ® ® Static Analysis & Pointer Checker - Find Coding & Security Errors
< ® ® Intel® Advisor XE - Threading Assistant
L4 Intel® Trace Analyzer & Collector - MPI Optimizing Tool
L L Intel® Compiler - Optimizing Compiler for C, C++ and Fortran
g g ° ° Intel® Integrated Performance Primitivest - Media and Data Optimizations
E-ﬁ g ° ° Intel® Threading Building Blocks T - Parallelize Applications for Performance
S 4 L L Intel® Math Kernel Library - High Performance Math
° Intel® MPI Library - Flexible, Efficient and Scalable Messaging
C, C++ only and Fortran only versions of
t Available for C, C++ only Parallel Studio XE are also available.

' Create fast, reliable code

Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Legal Disclaimer & Optimization Notice

INFORMATION IN THIS DOCUMENT IS PROVIDED “AS IS”. NO LICENSE, EXPRESS OR IMPLIED, BY
ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS
DOCUMENT. INTEL ASSUMES NO LIABILITY WHATSOEVER AND INTEL DISCLAIMS ANY EXPRESS OR
IMPLIED WARRANTY, RELATING TO THIS INFORMATION INCLUDING LIABILITY OR WARRANTIES
RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY
PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

Software and workloads used in performance tests may have been optimized for performance only on
Intel microprocessors. Performance tests, such as SYSmark and MobileMark, are measured using
specific computer systems, components, software, operations and functions. Any change to any of
those factors may cause the results to vary. You should consult other information and performance
tests to assist you in fully evaluating your contemplated purchases, including the performance of that
product when combined with other products.

Copyright © , Intel Corporation. All rights reserved. Intel, the Intel logo, Xeon, Xeon Phi, Core,
VTune, and Cilk are trademarks of Intel Corporation in the U.S. and other countries.

Optimization Notice

Intel’s compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that
are not unique to Intel microprocessors. These optimizations include SSE2, SSE3, and SSSE3 instruction sets and
other optimizations. Intel does not guarantee the availability, functionality, or effectiveness of any optimization on
microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in this product are intended
for use with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture are reserved for
Intel microprocessors. Please refer to the applicable product User and Reference Guides for more information
regarding the specific instruction sets covered by this notice.

Notice revision #20110804

Intel Confidential

Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Backup

Dynamic Analysis Finds Hidden Errors Early

Intel® Inspector XE 2013

Cross-thread Stack Access

Occurs when a thread accesses a different thread's stack.

Data Race

Occurs when multiple threads access the same memory location without
proper synchronization and at least one access is a write.

Deadlock

Occurs when two or more threads are waiting for each other to release
resources (such as mutexes, critical sections, and thread handles) while
holding resources the other threads are trying to acquire. If none of the
threads release their resources, then none of the threads can proceed.

GDI Resource Leak

Occurs when a GDI object is created but never deleted.

Incorrect memcpy Call

Occurs when an application calls the memcpy function with two pointers that
overlap within the range to be copied. This condition is only checked on
Linux* systems. On Windows* systems, this function is safe for overlapping
memory.

Invalid Deallocation

Occurs when an application calls a deallocation function with an address that
does not correspond to dynamically allocated memory.

Invalid Memory Access

Occurs when a read or write instruction references memory that is logically or
physically invalid.

Invalid Partial Memory Access

Occurs when a read or write instruction references a block (2-bytes or more)
of memory where part of the block is logically invalid.

Kernel Resource Leak

Occurs when a kernel object handle is created but never closed.

Lock Hierarchy Violation

Occurs when the acquisition order of multiple synchronization objects (such as
mutexes, critical sections, and thread handles) in one thread differs from the
acquisition order in another thread, and these synchronization objects are
owned by the acquiring thread and must be released by the same thread.

Memory Growth

Occurs when a block of memory is allocated but not deallocated within a
specific time segment during application execution.

Memory Leak

Occurs when a block of memory is allocated and never released.

Mismatched Allocation/Deallocation

Occurs when a deallocation is attempted with a function that is not the logical
reflection of the allocator used.

Missing Allocation

Occurs when an invalid pointer is passed to a deallocation function. The
invalid address may point to a previously released heap block.

Thread Start Information

Occurs when the Intel Inspector XE detects the creation of a thread. This
problem is really informational feedback useful for confirming the number and
location of threads created during application execution and data collection.

Unhandled Application Exception

Occurs when the application undergoing analysis crashes because of an
unhandled exception thrown by the application.

Uninitialized Memory Access

Occurs when a read of an uninitialized memory location is reported.

Uninitialized Partial Memory Access

Occurs when a read instruction references a block (2-bytes or more) of
memory where part of the block is uninitialized.

For details, see our online documentation.

Copyright© 2013, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners.

http://software.intel.com/sites/products/documentation/doclib/stdxe/2013/inspectorxe/win/ug_docs/index.htm

Static Analysis Finds Over 250 Kinds of Errors
Intel® Parallel Studio XE 2013 family of suites

Here are some examples...

ALLOCATABLE array referenced before allocation

Argument corresponding to * for width or precision value should be type int

Argument count mismatch

Argument count mismatch at call to intrinsic function
Argument is not a pointer

Argument type mismatch at call to intrinsic function
Array parameter element size mismatch

Array parameter rank mismatch

Array parameter shape mismatch
Attempt to violate exception specification
Bad format flags

Base class has non-virtual destructor
Base class lacks destructor

Big parameter passed by value

Bounds violation

Buffer overflow through pointer

C library routine violates C++ object semantics

Chunk_size in OpenMP* SCHEDULE clause has side-effects
Chunk_size in OpenMP* SCHEDULE clause not loop-invariant
Class has virtual member functions but no derived classes
COMMON block is partly OpenMP* THREADPRIVATE
Conditional OpenMP* BARRIER

Data race

Data race from cilk_for

Data race from cilk_spawn

Destructor contains non-empty exception specification
Divide by zero

Double free

Duplicate subroutine definition

Exception thrown from destructor

File closed twice

Format to argument count mismatch

Format to argument type mismatch

FORTRAN IN argument modified

Function illegally exits OpenMP* construct

Function result ignored

Function result not set
Function return value discarded

Function use does not match its definition

Gets function is unsafe

Global object constructor can throw exception
Global object destructor can throw exception
Global redefinition of new or delete

Global/static variable relies on default initialization
Illegal parameter value

Implicit function declaration

Implicit type conversion causes object slicing

Improper nesting of OpenMP* constructs

Improper nesting of OpenMP* CRITICAL directives

Improper use of intrinsic function

Improper use of OpenMP* PRIVATE variable

Improper use of OpenMP* REDUCTION variable

Improper use of OpenMP* THREADPRIVATE array

Improper use of OpenMP* THREADPRIVATE variable
Inconsistent array declaration (element count mismatch)
Inconsistent array declaration (element size mismatch)
Inconsistent array declaration (element type mismatch)
Inconsistent array declaration (size mismatch)

Inconsistent enumeration declaration (enum value mismatch)
Inconsistent enumeration declaration (member count mismatch)
Inconsistent enumeration declaration (name mismatch)
Inconsistent enumeration declaration (tag mismatch)
Inconsistent enumeration declaration (type mismatch)

Inconsistent pointer declaration
(size mismatch)

Inconsistent pointer declaration (target size mismatch)
Inconsistent pointer declaration (type mismatch)

Inconsistent string declaration

Inconsistent structure declaration (field offset mismatch)
Inconsistent structure/union declaration (field count mismatch)
Inconsistent structure/union declaration (field name mismatch)
Inconsistent structure/union declaration (field size mismatch)

Inconsistent structure/union declaration
(field type mismatch)

Inconsistent structure/union declaration (size mismatch)
Inconsistent structure/union declaration (tag mismatch)
Inconsistent structure/union declaration (type mismatch)

For a more complete list, see our online documentation.

Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

http://software.intel.com/sites/products/documentation/doclib/stdxe/2013/composerxe/sa-ptr/sa-ptr_win_lin/index.htm

