
UCRL-PRES-219562

Resource Management using SLURM

The 7th International Conference on Linux Clusters
University of Oklahoma

May 1, 2006

Morris Jette (jette1@llnl.gov)
Lawrence Livermore National Laboratory

http://www.llnl.gov/linux/slurm

Disclaimer

This document was prepared as an account of work sponsored by an agency of the
United States Government. Neither the United States Government nor the University
of California nor any of their employees, makes any warranty, express or implied, or
assumes any legal liability or responsibility for the accuracy, completeness, or
usefulness of any information, apparatus, product, or process discloses, or
represents that its use would not infringe privately owned rights. References herein
to any specific commercial product, process, or service by trade name, trademark,
manufacture, or otherwise, does not necessarily constitute or imply its endorsement,
recommendation, or favoring by the United States Government or the University of
California. The views and opinions of authors expressed herein do not necessarily
state or reflect those of the United States Government or the University of California,
and shall not be used for advertising or product endorsement purposes.

This work was performed under the auspices of the U.S. Department of Energy by
the University of California, Lawrence Livremore National Laboratory under Contract
No. W-7405-Eng-48.

Overview

> The role of a resource manager
> Design issues for resource management on large-

scale clusters
> SLURM architecture
> SLURM commands and their use
> SLURM configuration
> Demonstration of SLURM build, installation,

configuration and use
> Special topics

Role of Resource Manager (RM)

> The “glue”

Role of Resource Manager

> Allocate resources within a cluster to jobs
- Nodes

– Processors
– Memory
– Disk space

- Interconnect/switch resources
– Switch windows

> Launch and otherwise manage jobs

> Typically light-weight and well suited for highly
parallel computers and jobs

> Examples: SLURM, Torque, Quadrics RMS

Can necessitate extensive
hardware knowledge and
interactions (e.g. establish

switch wiring and boot
nodes on BlueGene)

Role of Meta-Scheduler
(Resource Manager at a Higher Level)

> Allocate resources on one or more computers to jobs
- Nodes

– Processors
– Memory
– Disk space

> Launch and otherwise manage jobs

> Typically heavy-weight (many daemons)

> Typically complex to configure and administer

> Examples: LSF, Moab

Typically lacks extensive
hardware knowledge or

interactions

A Typical Configuration

LSF or Moab
Enterprise-wide

job scheduling and accounting

Computer A Computer B
SLURM

Cluster-wide
Node

monitoring,
resource

allocation,
job launch,

and job
management

Batch jobs

Interactive jobs

SLURM
Cluster-wide

Node
monitoring,

resource
allocation,
job launch,

and job
management

Are both schedulers needed?

> Perhaps, but that depends upon the system
architecture and workload

> If workload prioritization is not critical, a separate
batch system may not be needed
- Simple queuing (FIFO or conservative backfill scheduling)
- No movement of jobs between computers

> Depending upon the computer architecture and
workload, a separate resource manager may not be
needed
- Ethernet or InfiniBand
- Serial or moderately parallel jobs

> Some schedulers operate at both levels, but not very
well: LoadLeveler and LSF

Large-Scale RM Issues

> Highly parallellized components
- Lots of threads
- Separate read and write locks o n a r io s dt

a pe

s >

comunication(s) Tj ET Q Q q 36 36.00005
 720 540 re W n /Cs1 cs 0 0.75294119 0.75294119 sc q 0.23999999 0 0 0.23999999
36 0.000059 cm BT 83 0 0 83 505 2996 Tm /F1.0 1 Tf (-) Tj ET Q Q q 36 36.00005
 720 540 re W n /Cs1 cs 0 0 0 sc q 0.23999999 0 0 0.23999999 36 0.000059 c
 BT 83 0 0 83 499 2996 Tm /F1.0 1 Tf Ao

oid

pro

i

rat

i on

o

d

a

e o

n

> Highlyoptimlizd algorithmts

-

s

e ita ps

 i

 se

d

i o i

>

o i

o o

>

ystem noise--

 a

o

n o
a

oa od

-

 i

d

> -

Introducing SLURM

> SLURM (Simple Linux Utility for Resource
Management) has become a very popular resource
manager

> It is production quality and used on many of the
largest computers in the world

> It was developed primarily for Linux clusters, but also
supports BlueGene and IBM SP systems with the
Federation switch

> Developers include LLNL, HP, Linux NetworX,
PathScale, North Dakota State University, Indiana
University and others

Key SLURM Features

> Simple (relatively)
- Scheduling complexity external to SLURM

> Open source: GPL
> Portable (see next slide)
> Fault-tolerant

- For SLURM daemons and its jobs
> Secure

- Authentication plugin
> System administrator friendly

- Simple configuration file, supports heterogeneous clusters
> Scalable to the largest computers (16k nodes, 128k

processors)

SLURM Portability

> No kernel modifications

> C-language

> Autoconf configuration engine

> Provides skeleton of functionality with general-
purpose plugin mechanism. A highly flexible building
block approach to configuration

SLURM Entities

> Nodes: Individual computers
> Partitions: Job queues
> Jobs: Resource allocations
> Job steps: Set of (typically parallel) tasks

Partition 2Partition 1
Job

Step

Nodes

> Configuration parameters
- Processor count
- Real memory size
- Temporary disk space
- Features (arbitrary string, e.g. OS version)
- Scheduling weight (preferencc n

h

e

hh h

Ss Tj 83 0 0 83 5490166626
980Tm /bp Tj 83 0 0 83 1587.174861980Tm /e

h

h

> >Can allocate entie Wnodes to jobs or individua

>processors on eachWnode Tj 8T Q Q q 36 36.000057 720 540 re W n /Cs1 cs 0 0 75294119 0.75294119 sc
 0.23999999 0 0 0.23999999 36 0.000059 cm BT 83 0 0 83 405 162 1m /F1.0 1
f (-) Tj ET Q Q q 36 36.000057 720 540 re W n /Cs1 cs 0 0 0 sc q 0.23999999
0 0 0.23999999 36 0.000059 cm BT 83 0 0 83 499 162 1m /F1.0 1 Tf (N) Tj 13
0 0 83 559.18005 162 1m /occ

Node States

Completing
(a flag)

Draining
(Allocated or Completing with Drain flag set)

Drained
(Idle or Down with Drain flag set)

DownAllocated

Unknown

Idle

Possible initial state

scontrol update NodeName=X state=[drain | resume] Reason=X

Partitions

> General purpose job queue

> Nodes can be in more than one partition (new in
version 1.0)

> Configuration parameters
- Default (where jobs run by default)
- Unix groups allowed to use
- Maximum time for job allocation
- Minimum and maximum node count for job allocation
- Shared (permit or force more than one job per node)
- Hidden (by default, not seen by users lacking access)
- RootOnly (only user root can create the allocation, prevents

direct use by users, enforces batch system queuing)
- State (UP or DOWN)

Jobs

> Resource allocation: specific processors and memory
or entire nodes allocated to a user for some time
period

> Can be interactive (executed in real-time) or batch
(script queued for later execution)

> Many constraints available for user request

> Identified by ID number

Job States

Pending

Running Suspended

Completing

Completed TimeOutNodeFailCancelled Failed

Job Steps

> A set of tasks launched at the same time and sharing
a common communication mechanism (e.g. switch
windows configured for the tasks)

> Allocated resources within the job’s allocation

> Multiple job steps can executed concurrently or
sequentially on unique or overlapping resources

> Identified by ID number: <jobid>.<stepid>

Daemons and Commands

Compute Nodes Administration Nodes

slurmd

slurmd

slurmd

slurmctld
(primary)

slurmctld
(optional backup)

srun
(submit job or
spawn tasks)

squeue
(status jobs)

scancel
(signal jobs)

sinfo
(system
status)

scontrol
(administration

tool)
sacct

(accounting)

smap
(topology

info)

sbast
(file xfer)

slurmctld
(SLURM Control Daemon)

> Orchestrates SLURM activities across the cluster

> Primary components
- Node Manager: Monitors node state
- Partition Manager: Groups nodes into partitions with various

configuration parameters and allocates nodes to jobs
- Job Manager: Accepts user job requests and places pending

jobs into priority-ordered queue. Uses the partition manager
to allocate resources to the jobs and then launch them.

> Optional backup slurmctld (must share file system for
state information)

slurmd
 (SLURM Compute Node Daemon)

> Monitors state of a single node
> Manages user jobs and job steps within that node
> Very light-weight
> Supports hierarchical communications with

configurable fanout (new in version 1.1)

slurmd

slurmd

slurmdslurmdslurmdslurmd

slurmd

scancel

slurmctld and slurmd options

> -c Clear previous state, purges all job records for
slurmctld

> -D Run in the foreground, logs are written to stdout

> -v Verbose error messages, repeat for extra
verbose logging

> slurmctld –Dcvvvv (a typical debug mode)
> slurmd –Dcvvvv (a typical debug mode)

slurmstepd
(SLURM daemon to shepherd a job step)

> Spawned by slurmd on job step initiation

> Manages a job step and process its I/O

> One slurmstepd per job step

> Only persist while the job step is active

Commands – General Information

> Man pages are available for all commands

> “--help” option reports brief description of all options

> “--usage” option lists the options

> Can be run on any node in the cluster

> Any failure results in non-zero exit code

> SLURM APIs make new tools easy to develop
- The APIs are all well documented

Commands – General Information

> Almost all options have two formats
- A single letter option (e.g. “-p debug” for partition debug)
- A verbose option (e.g. “--partition=debug”)

> Time formats are days-hours:minutes:seconds

> Almost all commands support verbose logging with
“-v” option, use more v’s for more verbosity, -vvvv

> Many environment variables can be used to establish
site-specific and/or user-specific defaults
- For example “SQUEUE_STATES=all” for the squeue

command to display jobs in any state, including
COMPLETED or CANCELLED

scontrol

> Designed for system administrator use
- Reports all available fields for all entities
- Simple fixed output formats
- Limited filtering
- No sorting options

> Options can be abbreviated and are case insensitive
- “scontrol sho conf” == “scontrol show configuration” ==

“scontrol SHOW CONFIG”

> Many fields can be modified interactively by user root

> Just enter “scontrol” command name to run in
interactive mode

scontrol Display Example

> scontrol show <entity> [id]
- Entity: configuration, job, node or partition
- ID: a specific entity identifier, displays all by default

> scontrol show partition
PartitionName=debug TotalNodes=2 TotalCPUs=2048 RootOnly=NO
 Default=YES Shared=FORCE State=UP MaxTime=120 Hidden=NO
 MinNodes=1 MaxNodes=2 AllowGroups=ALL
 Nodes=linux[000-001] NodeIndicies=0,1,-1

Bitmap indicies, for mapping to node tables without string comparison.
Collection of comma separated min,max pairs with -1 terminator.
(e.g. linux[0-4,6-8,15] -> 0,4,6,8,15,15-1 assuming zero origin)

scontrol Update Example

> The output generated with the “show” command can
be used as input to the “update” command
- Cut and paste relevant fields between commands
- NOTE: Not all fields can be changed this way, some require

changing the configuration file and reconfiguring SLURM

> When draining a node, you must specify a reason,
the user id and time will be automatically appended

> Enclose node expressions with quotes

> scontrol update PartitionName=debug MaxTime=60
> scontrol update NodeName=“mcr[000-001]” State=drain \
Reason=“Power supply failing”

scontrol More Examples

> scontrol reconfig (re-read configuration file)
> scontrol shutdown (shutdown SLURM daemons)

> scontrol suspend <jobid>
> scontrol resume <jobid>

scancel

> Cancel a running or pending job or job step

> Can send an arbitrary signal to all processes on all
nodes associated with a job or job step

> Has filtering options (state, user, partition)

> Has interactive (verify) mode

> scancel 12.56 (cancel job step 12.56)
> scancel 13 (cancel job 13 and all of its steps)
> scancel –-user=don --state=pending (cancel don’s
 pending jobs)

sacct

> Reports accounting information for jobs and job steps

> Many filtering and output format options

> Uses job accounting file as input

> Accounting may be disabled (configuration option)

> sacct –u phil (get accounting information for user “phil”)
> sacct –p debug (get information for jobs in partition “debug”)

squeue

> Reports status of jobs and/or job steps

> Almost complete control of filtering, sorting and
output format is available

> squeue –u bob –t all (report jobs user “bob” in any state)
JOBID PARTITION NAME USER ST TIME NODES NODELIST(REASON)
 56 debug a.out bob CD 12:30 1 bgl000

> squeue –s –b debug (report steps in partition “debug”)
STEPID PARTITION NAME USER TIME NODELIST
123.45 debug sleep don 0:10 bgl001

> squeue –i60 (report job status every 60 seconds)

sinfo

> Reports status of nodes or partitions
- Partition-oriented format is the default

> Almost complete control of filtering, sorting and
output format is available

> sinfo –-Node (report status in node-oriented form)
NODELIST NODES PARTITION STATE
linux[0-10] 11 batch alloc
linux[11-15] 5 debug idle

> sinfo –p debug (report status of nodes in debug partition)
PARTITION AVAIL TIMELIMIT NODES NODELIST
debug UP 1:00:00 5 linux[11-15]

> sinfo –i60 (reports status every 60 seconds)

smap

> Reports status of jobs, nodes and partitions using a
graphical format

> Critical for BlueGene computer, shows 3-D node
layout (e.g. job packing, like Tetris)

> Displays: job, partitions, bglblocks (BlueGene only)
- Also establishes initial BlueGene configuration

> Command-line or graphical (curses) output formats

smap

 A A B B ID JOBID PARTITION BG_BLOCK USER ST TIME BP_LIST
 A A B B A 1234 debug RMP0 donna R 1:30 bgl[000x133]
 A A B B B 1235 debug RMP1 danny R 0:10 bgl[220x333]
A A B B C 1240 debug RMP2 chris R 9:10 bgl[200x311]
 D 1241 debug RMP3 bob R 0:49 bgl[202x213]
 A A B B
 A A B B
 A A B B
A A B B

 A A C C
 A A C C
 A A D D Y
A A D D |
 |
 A A C C 0---X
 A A C C /
 A A D D /
A A D D Z

sbcast (new in version 1.1)

> Copy a file to local disk on allocated nodes
- Execute after a resource allocation has taken place

> Can be faster than using a single file system
mounted on multiple nodes

> sbcast my_file /tmp/my_file

> sbcast --force my_data /tmp/my_data (overwrite old file)

> sbcast --preserve a.out /tmp/a.out (preserve timestamps)

srun

> Used to create a job
- Interactive mode (creates job allocation and runs a job step

with a single command)
- Allocate mode (allocates resources then spawns shell which

can initiate one or more job steps using srun)
- Batch mode (submit script for later execution)

> Can attach to previously allocated job

> Spawns job steps

> Dozens of options to control resource allocation
- Count of nodes or processors
- Specific nodes to use or avoid
- Node features (processor count, memory size, etc.)

Different Executables by Task
(new in version 1.1)

> Different programs may be launched by task ID with
different arguments

> Use “--multi-prog” option and specify configuration file
instead of executable program

> Configuration file lists task IDs, executable program,
and arguments (“%t” mapped to task ID, “%o”
mapped to offset within task ID range)

> cat master.conf
#TaskID Program Args
0 /usr/jette/master
1-4 /usr/jette/slave --rank=%o

> srun -N5 --multi-prog master.conf

srun Interactive Examples

> srun –N2 –-label hostname
0: linux0
1: linux1

> srun –n4 –N1 --oversubscribe –-label hostname
0: linux0
1: linux0
2: linux0
3: linux0

srun Interactive Examples

> Standard Input, Output, and Error are forwarded to
the controlling srun command

> srun –N2 bash
hostname
0: linux0
1: linux1
date
0: Thu Feb 16 13:33:35 PST 2006
1: Thu Feb 16 13:33:35 PST 2006
exit (terminate “bash” command,
 which ends the job)

srun Allocate Example

> srun –N2 –-allocate (NOTE: the resource allocation
$ echo $SLURM_JOBID is performed, no tasks spawned)
1234

$ squeue –j $SLURM_JOBID
JOBID PARTITION NAME USER ST TIME NODES NODELIST(REASON)
 1234 debug moe R 0:02 2 linux[0-1]

$ srun hostname (run one or more job steps)
linux0
linux1

$ exit (terminate shell and release the allocation)

srun Batch

MPI Support

> Many different versions of MPI are supported:
MPICH2, OpenMPI, HP-MPI, LAM/MPI, Quadrics
MPI, ChaMPIon, BlueGene MPI

> Srun is used to directly launch tasks for Quadrics MPI
and MPICH2: srun –N16 a.out

> Others use mpirun, typically within a previously
created SLURM job allocation

> srun –N2 –-allocate
$ mpirun a.out
$ exit (release the allocation)

Job Execution Sequence

slurmd

slurmd

slurmctldsrun (interactive)

1. srun sends request to slurmctld (e.g. srun –N2 hostname)
2. slurmctld grants allocation, returns step credential
3. srun opens sockets for job I/O
4. srun forwards step credential along with task info to slurmd
5. slurmd forwards requests as needed (with fanout)
6. slurmd forks/execs slurmstepd
7. slurmstepd connects I/O to srun and launches tasks
8. termination information send over sockets to srun
9. srun notifies slurmctld of job completion
10. slurmctld verifies completion of all processes
11. slurmctld releases resources for subsequent jobs

1,2,9

3

5,10

4

slurmstepd slurmstepd
6 6

task task
7 7

7,8 7,8

11

103

Build and Install, RPMs

> Download a tar-ball
- ftp://ftp.llnl.gov/pub/linux/slurm or
- http://www.sourceforge.net (also has RPMs)

> Build and install the relevant RPMs
- rpmbuild --ta slurm-1.1.0.tar.bz2
- rpm --install <the rpm files>

> NOTE: Some RPMs are infrastructure specific:
- slurm-auth-authd*rpm authd authentication plugin
- slurm-auth-munge*rpm munge authentication plugin
- slurm-auth-none*rpm “none” authentication plugin
- slurm-bluegene*rpm BlueGene specific plugins and tools
- slurm-switch-elan*rpm Quadrics Elan switch plugin
- slurm-switch-federation*rpm IBM Federation switch plugin

Build and Install without RPMs

> ./configure <options>
- --enable-debug additional debugging
- --prefix=<dir> installation location
- --sysconfdir=<dir> configuration file location

> make

> make install

Configuration

> Most configuration parameters have usable defaults
> You will at least need to identify the nodes in your

cluster and their grouping into a partition

> Web-based tool included, good for simple setups
- doc/html/configurator.html

> Sample configuration file with extensive in-line
comments included
- etc/slurm.conf.example

> For more information: man slurm.conf

Configuration Options

> Specify some authentication mechanism
- AuthType=auth/munge is recommended
- AuthType=auth/none is OK for our testing

> Node naming
- NodeName: Name SLURM uses for the node
- NodeAddr (optional): Name or IP address for communications
- NodeHostname (optional): what “hostname -s” returns on the node
- “localhost” works for a stand-alone system

> SelectType controls node selection plugin
- SelectType=select/cons_res allocates individual processors
- SelectType=select/linear allocates entire nodes to jobs
- SelectType=select/bluegene for BlueGene computer only

Configuration Options

> The actual resources that each node registers with
will be used for scheduling if FastSchedule=0

> Otherwise the resources configured in slurm.conf
will be used as a basis for scheduling (faster)

> You must also explicitly define the partitions and
their nodes

Scheduling Options

> SchedType=sched/builtin First-In First-Out
> SchedType=sched/backfill Conservative backfill
> SchedType=sched/maui External Maui Scheduler

> Gang scheduling: Time slice resources for parallel jobs
- Use scontrol suspend/resume (control via script)
- Can dramatically improve system utilization and performance
- Example:

– scontrol update PartitionName=batch state=down
– scontrol suspend <jobid> (for all running jobs in partition “batch”)
– scontrol update PartitionName=full state=up
– scontrol resume <jobid> (for any suspended job in partition “full”)

Sample Configuration
(excerpt)

Sample SLURM configuration (excerpt)
ControlMachine=linux0
BackupController=linux1
#
AuthType=“auth/authd”
PluginDir=/usr/lib/slurm
SlurmctldPort=7002
SlurmdPort=7003
SlurmUser=slurm
#
NodeName=DEFAULT Procs=2 TmpDisk=64000
NodeName=linux[2-1000] RealMemory=16000 Weight=16
NodeName=linux[1001-1016] RealMemory=32000 Weight=32
#
PartitionName=debug Nodes=linux[2-33] MaxTime=30
PartitonName=batch Nodes=linux[34-1016] MaxTime=Infinite

Pluggable Authentication Module
(PAM)

> Can be used to prevent users from logging into node
that isn’t allocated to them

> Distinct package (not in the SLURM tar-ball or RPM),
but can be downloaded from the same FTP server

> Can also be used by SLURM to establish node-
specific limits for a user’s tasks when spawned (new
in version 1.1)

Test Suite

> SLURM has an extensive test suite: about 160 tests
that execute roughly 1,000 jobs and 10,000 job steps

> First build, install, configure and initiate SLURM
> Change directory to “testsuite/expect”
> Copy “globals.example” to “globals” and modify

pathnames as needed (likely the variable “slurm_dir”)
> Run individual tests as desired (see README for

their descriptions) or run the full suite by executing
the script “regression”

Demonstration Build and Install
(Step 0)

> The SLURM CD contains
- SLURM tar-ball
- Sample configuration files

– Single host
– Emulated cluster
– Emulated BlueGene system

- SLURM web pages
- SLURM PAM tar-ball
- Tutorial

Demonstration Build and Install
(Step 1)

> cd /tmp

> mkdir slurm (used as install directory)
> mkdir slurm/etc (used for configuration info)

> cp <cd_location>/slurm-1.1.0.tar.bz2 .

> bunzip2 slurm-1.1.0.tar.bz2

> tar -xf slurm-1.1.0.tar

> cd slurm-1.1.0

Demonstration Build and Install
(Step 2)

> ./configure --enable-debug --prefix=/tmp/slurm \
--sysconfdir=/tmp/slurm/etc

> Trick to emulate a cluster:
- echo “#define HAVE_FRONT_END 1” >>config.h

> Trick to emulate BlueGene:
- echo “#define HAVE_FRONT_END 1” >>config.h
- echo “#define HAVE_BG 1” >>config.h

> make

> make install

Demonstration Build and Install
(Step 3)

> cp <cd_location>/configs/* /tmp/slurm/etc
- Substitute slurm.conf.bluegene or slurm.conf.cluster for

slurm.conf as needed
- Set SlurmUser to your user name

> cd /tmp/slurm

> xterm &

> xterm &

> xterm &

Demonstration Build and Install
(Step 4)

> New window 1:
- sbin/slurmctld -Dcvv

> New window 2:
- sbin/slurmd -Dcvv

> New window 2:
- cd bin
- ./sinfo
- ./srun hostname
- ./srun -N1 -n10 -O hostname
- ./srun -N1 -A

– ./squeue

Demonstration Build and Install
(Extras)

> Try running configurator.html (don’t need Linux
machine)

> Try running test suite
- cd /tmp/slurm-1.1.0/testsuite/expect
- cp globals.example globals
- Edit globals: set slurm_dir to “/tmp/slurm”
- ./test1.1
- ./regression >qa.out

Blue Gene Support

> Additional configuration file, bluegene.conf, controls
configuration of bglblocks
- Build using smap tool
- bglblocks may overlap or be created as needed (new in v1.1)

> SlurmProlog and SlurmEpilog must use included
slurm_prolog and slurm_epilog to synchronize job with
bglblock state

> SLURM internally treats each midplane as a node
- Names specify end points in rectangular prism: bgl[000x133]

> Major change in version 1.1:
- User tools all use c-node count
- Bluegene plugin maps between the two systems

IBM SP / AIX Support

> SLURM builds on AIX and has a plugin for the
Federation switch

> Job step launch is performed through POE for
compatibility with IBM tools (it’s slower than SLURM
job step launch, but much faster than LoadLeveler)

> SLURM has a library that emulates LoadLeveler for
POE’s use. Unfortunately that is based upon IBM
confidential information and is not available to others
at this time

Large Cluster Support (>1k nodes)

> Virtually all SLURM components have been validated to
16k nodes

> Allocate whole nodes to jobs rather than individual
processors: SelectType=select/linear

> Set slurmd ping interval large: SlurmdTimeout=120
or disable completely: SlurmdTimeout=0

> Avoid enabling job accounting: JobAcctType=jobacct/none
- If needed, configure long sampling intervelr

/tetImv

- -

Mailing lists

> For communications with developers (sometimes
high-volume): slurm-dev@lists.llnl.gov

> For announcements about new releases (low-
volume): slurm-announce@lists.llnl.gov

> To subscribe send e-mail to majordomo@lists.llnl.gov
with the body of the message containing the word
“subscribe” followed by the list name and your e-mail
address (if not the sender). For example:
subscribe slurm-dev bob@yahoo.com

Development

> Contact slurm-dev@lists.llnl.gov to coordinate efforts
and avoid “re-inventing the wheel”

> If practical, perform your development work in the
form of a plugin so that it can be well isolated. There
is documentation only for all of the plugin interfaces

> If possible, use the “C” programming language and
follow Linux Kernel coding style for consistency (see
http://www.llnl.gov/linux/slurm/coding_style.pdf) ,
which is basically Kernigan and Richie coding style
with 8-character indentations

Testimonials

> “SLURM is the coolest invention since Unix.” – Dennis Gurgul,
Partners Health Care

> “[SLURM] reduces job launch times from tens of minutes with
LoadLeveler to a few seconds using SLURM. This effectively
provides us with millions of dollars worth of additional compute
resources without additional cost.” - Dona Crawford, LLNL

> “I would rank SLURM as the best of the three open source
batching systems available, by a rather large margin.” Bryan
O’Sullivan, PathScale

> “SLURM is a great product that I’d recommend to anyone
setting up a cluster…” - Josh Lothian, Oak Ridge National
Laboratory

For More Information

> Information: http://www.llnl.gov/linux/slurm

> Downloads: ftp://ftp.llnl.gov/pub/linux/slurm

> Email: jette1@llnl.gov

